Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jul;117(4):111066.
doi: 10.1016/j.ygeno.2025.111066. Epub 2025 May 31.

Unraveling the genetic mechanisms of UV radiation resistance in Bacillus through biofilm formation, sporulation, and carotenoid production

Affiliations
Free article
Review

Unraveling the genetic mechanisms of UV radiation resistance in Bacillus through biofilm formation, sporulation, and carotenoid production

Prasansah Shrestha et al. Genomics. 2025 Jul.
Free article

Abstract

Bacillus species are Gram-positive bacteria that are rod-shaped, endospore-forming, and aerobic or facultatively anaerobic. With over 300 recognized species, Bacillus subtilis stands out as a well-studied model organism. The genus's various species exhibit a wide range of physiological capabilities, allowing them to thrive in diverse environmental conditions. Each cell produces a single endospore, which is highly resistant to heat, cold, radiation, desiccation, and disinfectants. Among Bacillus strains, those capable of producing spores, biofilms, and carotenoids demonstrate significant resilience to UV light. This review examines the genes involved in spore formation, biofilm development, and carotenoid synthesis, emphasizing their roles in UV radiation survival. We explore the interconnections between these processes and their combined contribution to UV resistance, focusing on the underlying genetic mechanisms. These insights will benefit researchers studying the genetic basis of UV radiation resistance in Bacillus species. IMPORTANCE: Bacteria employ adaptive strategies in extreme environments through rapid changes in gene expression, altering their phenotype for survival. Bacillus species, for example, defend against UV radiation by making spores, creating biofilms, and producing pigments. During sporulation, sigma factors (σF, σE, σG, and σK) regulate gene expression to adapt to environmental shifts. It has been found that the spores of some species may contain pigments that strongly absorb UV radiation, playing a crucial role in spore UV resistance. UV light penetrates biofilm matrices minimally, mainly affecting surface cells, which produce compounds like mycosporine-like amino acids and carotenoids to shield against UV damage.

Keywords: Bacillus; Biofilm; Carotenoid; Spore; UV-radiation resistance.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

MeSH terms

LinkOut - more resources