Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 23;30(5):37240.
doi: 10.31083/FBL37240.

A Highly Selective and Sensitive Fluorescent Probe With a Large Stokes Shift for Near-Infrared Visualization of Endogenous and Exogenous Biothiols in Living Cells

Affiliations
Free article

A Highly Selective and Sensitive Fluorescent Probe With a Large Stokes Shift for Near-Infrared Visualization of Endogenous and Exogenous Biothiols in Living Cells

Xiaomin Li et al. Front Biosci (Landmark Ed). .
Free article

Abstract

Background: Fluorescent probes have become a powerful tool for monitoring biothiol concentrations, aiding in disease diagnosis and treatment while also facilitating the exploration of fundamental biological processes. However, the probes are limited by the short fluorescence emission wavelength and small Stokes shift, which makes them susceptible to background fluorescence interference and significant self-absorption. To overcome these limitations and achieve high-fidelity biothiols detection in complex biological systems, this study focuses on developing a near-infrared fluorescent probe with an extended Stokes shift.

Methods: (E)-4-(5-(2-(4-(dicyanomethylene)-4H-chromen-2-yl)vinyl)thiophen-2-yl)phenyl 2,4-dinitrobenzenesulfonate (DCMOS-N), a near-infrared (NIR) fluorescent probe featuring a large Stokes shift, was designed and synthesized for biothiols detection. The optical properties of DCMOS-N were evaluated using ultraviolet-visible (UV-Vis) and fluorescence spectroscopy. Additionally, its imaging capabilities for detecting biothiols in living cells were assessed through confocal fluorescence microscopy.

Results: Fluorescence spectral analysis confirmed that the DCMOS-N probe exhibits high selectivity and strong anti-interference properties in biothiol detection. Moreover, its fluorescence intensity increases upon the addition of biothiols. Notably, a strong linear correlation was observed across the concentration range of 0 to 100 μmol/L (R2 = 0.9944 for glutathione (GSH), 0.9942 for cysteine (Cys), and 0.9946 for homocysteine (Hcy)), enabling the quantitative analysis of biothiol concentrations in biological systems. The detection limits for GSH, Cys, and Hcy were determined as 0.142 μmol/L, 0.129 μmol/L, and 0.143 μmol/L, respectively. Importantly, the practical application of DCMOS-N in living cells was validated, with confocal fluorescence imaging demonstrating its capability to detect both endogenous and exogenous biothiols in HeLa cells.

Conclusion: An NIR fluorescent probe, DCMOS-N, was developed and effectively utilized to monitor biothiols in living HeLa cells. The successful design of DCMOS-N presents significant potential and serves as an innovative platform for developing fluorescence probes targeted at biothiols.

Keywords: biothiols; fluorescent probe; large Stokes shifts; near-infrared fluorescence imaging.

PubMed Disclaimer

Similar articles

LinkOut - more resources