Visible-Light-Controlled Lysine-Selective Crosslinking Decodes Protein Complexes and Dynamic Interactomes in Live Cells
- PMID: 40464585
- DOI: 10.1002/anie.202507254
Visible-Light-Controlled Lysine-Selective Crosslinking Decodes Protein Complexes and Dynamic Interactomes in Live Cells
Abstract
Crosslinking strategies have emerged as an attractive technology for deciphering protein complexes and protein-protein interactions (PPIs). However, commonly used crosslinking strategies present significant challenges for the precise analysis of protein complexes and dynamic PPIs in native biological environments. Here, we report the development of the first visible-light-inducible lysine-specific homobifunctional photo-crosslinkers and introduce Visible-light-controlled Lysine-selective crosslinking (VL-XL) strategy for in-depth analysis of protein complexes and profiling dynamic interactomes in live cells. By synergistically integrating the advantages of temporal control, high biocompatibility, and lysine selectivity, the VL-XL strategy not only provides an effective solution for protein complexes studies-achieving residue-specific crosslinked peptides, delivering high-confidence data and streamlined mass spectrometry (MS) data analysis-but also reveals dynamic interactomes in various scenarios. The VL-XL strategy successfully profiles the time-resolved, epidermal growth factor (EGF)-stimulated epidermal growth factor receptor (EGFR) interactome, providing valuable insights into regulatory mechanisms of EGFR signaling. More importantly, the VL-XL strategy effectively unveils molecular glue degrader-induced E3 ligase interactome, leading to discovery of neo-substrates such as Sestrin-2 (SESN2) and opening an innovative avenue for identifying novel targets for degradation. Overall, the VL-XL strategy provides a robust chemical tool, inspiring innovative solutions to address unresolved questions in multiple fields.
Keywords: Chemoproteomics; Molecular glue degraders; Photo‐crosslinking; Protein‐protein interactions; Targeted protein degradation.
© 2025 Wiley‐VCH GmbH.
Similar articles
-
Primary Amine-Based Photoclick Chemistry: From Concept to Diverse Applications in Chemical Biology and Medicinal Chemistry.Acc Chem Res. 2025 Jul 1;58(13):1963-1981. doi: 10.1021/acs.accounts.5c00158. Epub 2025 Jun 18. Acc Chem Res. 2025. PMID: 40532071 Review.
-
Spatiotemporal and global profiling of DNA-protein interactions enables discovery of low-affinity transcription factors.Nat Chem. 2023 Jun;15(6):803-814. doi: 10.1038/s41557-023-01196-z. Epub 2023 Apr 27. Nat Chem. 2023. PMID: 37106095
-
Degeneration mechanisms and advancements in optimization for preparation and crosslinking strategy of pericardium-based bioprosthetic heart valves.Acta Biomater. 2025 Jul 1;201:51-74. doi: 10.1016/j.actbio.2025.05.062. Epub 2025 May 24. Acta Biomater. 2025. PMID: 40419072 Review.
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
Developing a new cleavable crosslinker reagent for in-cell crosslinking.Commun Chem. 2025 Jun 23;8(1):191. doi: 10.1038/s42004-025-01568-1. Commun Chem. 2025. PMID: 40550823 Free PMC article.
References
-
- J. D. Chavez, H. H. Wippel, X. Tang, A. Keller, J. E. Bruce, Chem. Rev. 2022, 122, 7647–7689.
-
- F. J. O'Reilly, J. Rappsilber, Nat. Struct. Mol. Biol. 2018, 25, 1000–1008.
-
- G. Kustatscher, T. Collins, A. C. Gingras, T. Guo, H. Hermjakob, T. Ideker, K. S. Lilley, E. Lundberg, E. M. Marcotte, M. Ralser, J. Rappsilber, Nat. Methods 2022, 19, 774–779.
-
- C. Yu, L. Huang, Anal. Chem. 2018, 90, 144–165.
-
- L. Piersimoni, P. L. Kastritis, C. Arlt, A. Sinz, Chem. Rev. 2022, 122, 7500–7531.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous