Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jul;91(1):106526.
doi: 10.1016/j.jinf.2025.106526. Epub 2025 Jun 2.

From Cas proteins to cutting-edge biosensors: A new era in clinical pathogen diagnostics

Affiliations
Free article
Review

From Cas proteins to cutting-edge biosensors: A new era in clinical pathogen diagnostics

Pan Yang et al. J Infect. 2025 Jul.
Free article

Abstract

Infectious pathogens exert a profound impact on global health and socio-economic stability, positioning them as a critical focus of scientific inquiry. To safeguard public health, propel advancements in medical diagnostics, and ensure food safety, the development of efficient technologies for rapid, onsite detection of pathogens is imperative. In light of recent research breakthroughs, CRISPR/Cas-based technologies for pathogen biosafety and molecular diagnostics have emerged as particularly promising in the realm of infectious disease detection. This review succinctly introduces the working principles of CRISPR/Cas systems and thoroughly discusses the design and development of various CRISPR/Cas-based biosensors. Importantly, this paper explores the robust applications of CRISPR/Cas-assisted biosensing for emerging infectious diseases, highlighting its potential in pathogen diagnostics with features like cost-effectiveness, multiplex detection and POCT applications. Furthermore, challenges and future developments of CRISPR/Cas-based biosensors for rapid and accurate pathogen detection in specialized settings are also summarized, integrating CRISPR detection with portable POCT biosensors, nanomaterials and novel colorimetric materials. As it builds on a lot of foundational work and offers new insights and detailed reference to advance the development and application of CRISPR technologies in clinical pathogen diagnostics, opening new avenues in medical diagnostics and the prevention and control of infectious diseases.

Keywords: Bacteria; CRISPR/Cas system; Fungi; Molecular diagnostic; Pathogenic biosafety; Virus.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

MeSH terms