Observation of string breaking on a (2 + 1)D Rydberg quantum simulator
- PMID: 40468082
- DOI: 10.1038/s41586-025-09051-6
Observation of string breaking on a (2 + 1)D Rydberg quantum simulator
Abstract
Lattice gauge theories (LGTs) describe a broad range of phenomena in condensed matter and particle physics. A prominent example is confinement, responsible for bounding quarks inside hadrons such as protons or neutrons1. When quark-antiquark pairs are separated, the energy stored in the string of gluon fields connecting them grows linearly with their distance, until there is enough energy to create new pairs from the vacuum and break the string. Although these phenomena are ubiquitous in LGTs, simulating the resulting dynamics is a challenging task2. Here we report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator based on neutral atom arrays3-5. We show that a (2 + 1)-dimensional LGT with dynamical matter can be efficiently implemented when the atoms are placed on a Kagome geometry6, with a local U(1) symmetry emerging from the Rydberg blockade7. Long-range Rydberg interactions naturally give rise to a linear confining potential for a pair of charges, allowing us to tune both their masses and the string tension. We experimentally probe string breaking in equilibrium by adiabatically preparing the ground state of the atom array in the presence of defects, distinguishing regions within the confined phase dominated by fluctuating strings or by broken string configurations. Finally, by harnessing local control over the atomic detuning, we quench string states and observe string-breaking dynamics exhibiting a many-body resonance phenomenon. Our work provides opportunities for exploring phenomena in high-energy physics using programmable quantum simulators.
© 2025. The Author(s), under exclusive licence to Springer Nature Limited.
Conflict of interest statement
Competing interests: M.H., B.B., M.K., A.L., S.H.C., F.L., S.W., A.K., M.D.L. and A.B. are shareholders of QuEra Computing and M.H., M.K., A.L., S.H.C., F.L., S.W., A.K. and A.B. are also employees of QuEra Computing. Other authors do not have any competing interests.
Similar articles
-
Visualizing dynamics of charges and strings in (2 + 1)D lattice gauge theories.Nature. 2025 Jun;642(8067):315-320. doi: 10.1038/s41586-025-08999-9. Epub 2025 Jun 4. Nature. 2025. PMID: 40468064 Free PMC article.
-
Real-time dynamics of string breaking in quantum spin chains.Phys Rev B. 2020;102(1):10.1103/physrevb.102.014308. doi: 10.1103/physrevb.102.014308. Phys Rev B. 2020. PMID: 34131609 Free PMC article.
-
Confinement and Mott Transitions of Dynamical Charges in One-Dimensional Lattice Gauge Theories.Phys Rev Lett. 2021 Oct 15;127(16):167203. doi: 10.1103/PhysRevLett.127.167203. Phys Rev Lett. 2021. PMID: 34723595
-
Dynamical Localization Transition of String Breaking in Quantum Spin Chains.Phys Rev Lett. 2023 Dec 8;131(23):230402. doi: 10.1103/PhysRevLett.131.230402. Phys Rev Lett. 2023. PMID: 38134792
-
Mean Field Approaches to Lattice Gauge Theories: A Review.Entropy (Basel). 2025 Feb 27;27(3):250. doi: 10.3390/e27030250. Entropy (Basel). 2025. PMID: 40149175 Free PMC article. Review.
Cited by
-
Quantum computers tackle unexplored particle physics.Nature. 2025 Jun 5. doi: 10.1038/d41586-025-01797-3. Online ahead of print. Nature. 2025. PMID: 40481197 No abstract available.
References
-
- Gross, F. et al. 50 years of quantum chromodynamics: introduction and review. Eur. Phys. J. C 83, 1125 (2023). - DOI
-
- Bauer, C. W., Davoudi, Z., Klco, N. & Savage, M. J. Quantum simulation of fundamental particles and forces. Nat. Rev. Phys. 5, 420–432 (2023). - DOI
-
- Wurtz, J. et al. Aquila: Quera’s 256-qubit neutral-atom quantum computer. Preprint at arxiv.org/abs/2306.11727 (2023).
LinkOut - more resources
Full Text Sources