Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 23;65(12):6367-6381.
doi: 10.1021/acs.jcim.5c00731. Epub 2025 Jun 5.

scGANSL: Graph Attention Network with Subspace Learning for scRNA-seq Data Clustering

Affiliations

scGANSL: Graph Attention Network with Subspace Learning for scRNA-seq Data Clustering

Zhenqiu Shu et al. J Chem Inf Model. .

Abstract

Single-cell RNA sequencing (scRNA-seq) has become a crucial technology for analyzing cellular diversity at the single-cell level. Cell clustering is crucial in scRNA-seq data analysis as it accurately identifies distinct cell types and uncovers potential subpopulations. However, most existing scRNA-seq methods rely on a single view for analysis, leading to an incomplete interpretation of the scRNA-seq data. Furthermore, the high dimensionality of the scRNA-seq data and the inevitable noise pose significant challenges for clustering tasks. To address these challenges, in this study, we introduce a novel clustering method, called graph attention network with subspace learning (scGANSL), for scRNA-seq data clustering. Specifically, the proposed scGANSL method first constructs two views using highly variable genes (HVGs) screening and principal component analysis (PCA). They are then individually fed into a multiview shared graph autoencoder, where clustering labels guide the learning of latent representations and the coefficient matrix. Furthermore, the proposed method integrates a zero-inflated negative binomial (ZINB) model into a self-supervised graph attention autoencoder to learn latent representations more effectively. To preserve both local and global structures of scRNA-seq data in the latent representation space, we introduce a local learning and self-expression strategy to guide model training. Experimental results across various scRNA-seq data sets demonstrate that the proposed scGANSL model significantly outperforms other state-of-the-art scRNA-seq data clustering methods.

PubMed Disclaimer

LinkOut - more resources