Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2025 May 19:arXiv:2411.11010v2.

Coexistence vs collapse in transposon populations

Affiliations

Coexistence vs collapse in transposon populations

Aria Yom et al. ArXiv. .

Update in

Abstract

Transposons are small, self-replicating DNA sequences found in every branch of life. Often, one transposon will parasitize another, forming a tiny intracellular ecosystem. In some species these ecosystems thrive, while in others they go extinct, yet little is known about when or why this occurs. Here, we present a stochastic model for these ecosystems and discover a transition from stable coexistence to population collapse when the propensity for a transposon to replicate comes to exceed that of its parasites. Our model also predicts that replication rates should be low in equilibrium, which appears to be true of many transposons in nature.

PubMed Disclaimer

Figures

FIG. 1:
FIG. 1:
Helitron replication mechanism. (a) The transposase binds to one end of the helitron and begins peeling one strand. (b) The transposase excises and circularizes the single strand of helitron DNA. The cell repairs the missing material. (c) The helitron is converted into double stranded form and moved to a new location in the genome. (d) The helitron is inserted into a new genomic location. Note that some details of this process remain unknown. Please see Refs. [–23] for more details.
FIG. 2:
FIG. 2:
Simulation of a stable system of 3 autonomous and 3 non-autonomous strains, each starting at λi(0)=1, with t measured in arbitrary units. αi,ωi,q, and ri were randomly chosen for each strain. In this instance, αi={.75,.36,.50,.51,.58,.56}, ωi={0,0,0,.61,.77,.42}, q=.00076,ri=.0099. Note that of the six initial strains, only two persist to t=, one autonomous and one non-autonomous.
FIG. 3:
FIG. 3:
Total transposon counts after long simulations. At each point, λa+λn was evaluated at t=10000, by which time the system had usually equilibrated. Parameters satisfied αaαn=1,rarn=10-4, and q=10-2. The dotted curves denote the phase boundaries αa=αn and q+raαa-rnαn.
FIG. 4:
FIG. 4:
Simulation of a finite population of autonomous and non-autonomous elements. Parameters used: λa(0)=λn(0)=1,αa=1,αn=2,q=ra=rn=10-2,N=4096. (left) Dynamics of λa and λn. The infinite population equilibrium values λa0 and λn0 are indicated by dashed lines, while the dotted lines denote fluctuations of size 4Σaa and 4Σnn. (right) Orbit of λa and λn with fixed point and 4Σ ellipse.

Similar articles

References

    1. Siguier P., Gourbeyre E., and Chandler M., Bacterial insertion sequences: their genomic impact and diversity, FEMS Microbiology Reviews 38, 865 (2014), https://academic.oup.com/femsre/article-pdf/38/5/865/18142951/38-5-865.pdf. - PMC - PubMed
    1. Thomas J. and Pritham E. J., Helitrons, the eukaryotic rolling-circle transposable elements, Microbiology Spectrum 3, 10.1128/microbiolspec.mdna3 (2015), https://journals.asm.org/doi/pdf/10.1128/microbiolspec.mdna3-0049-2014. - DOI - DOI - PubMed
    1. Wells J. and Feschotte C., A field guide to eukaryotic transposable elements, Annu Rev Genet 54, 539 (2020) - PMC - PubMed
    1. Lander E., Linton L., Birren B., Nusbaum C., Zody M., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D., Harris K., Heaford A., Howland J., Kann L., Lehoczky J., LeVine R., McEwan P., McKernan K., Meldrim J., Mesirov J., Miranda C., Morris W., Naylor J., Raymond C., Rosetti M., Santos R., Sheridan A., Sougnez C., Stange-Thomann Y., Stojanovic N., Subramanian A., Wyman D., Rogers J., Sulston J., Ainscough R., Beck S., Bentley D., Burton J., Clee C., Carter N., Coulson A., Deadman R., Deloukas P., Dunham A., Dunham I., Durbin R., French L., Grafham D., Gregory S., Hubbard T., Humphray S., Hunt A., Jones M., Lloyd C., McMurray A., Matthews L., Mercer S., Milne S., Mullikin J., Mungall A., Plumb R., Ross M., Shownkeen R., Sims S., Waterston R., Wilson R., Hillier L., McPherson J., Marra M., Mardis E., Fulton L., Chinwalla A., Pepin K., Gish W., Chissoe S., Wendl M., Delehaunty K., Miner T., Delehaunty A., Kramer J., Cook L., Fulton R., Johnson D., Minx P., Clifton S., Hawkins T., Branscomb E., Predki P., Richardson P., Wenning S., Slezak T., Doggett N., Cheng J., Olsen A., Lucas S., Elkin C., Uberbacher E., Frazier M., Gibbs R., Muzny D., Scherer S., Bouck J., Sodergren E., Worley K., Rives C., Gorrell J., Metzker M., Naylor S., Kucherlapati R., Nelson D., Weinstock G., Sakaki Y., Fujiyama A., Hattori M., Yada T., Toyoda A., Itoh T., Kawagoe C., Watanabe H., Totoki Y., Taylor T., Weissenbach J., Heilig R., Saurin W., Artiguenave F., Brottier P., Bruls T., Pelletier E., Robert C., Wincker P., Smith D., Doucette-Stamm L., Rubenfield M., Weinstock K., Lee H., Dubois J., Rosenthal A., Platzer M., Nyakatura G., Taudien S., Rump A., Yang H., Yu J., Wang J., Huang G., Gu J., Hood L., Rowen L., Madan A., Qin S., Davis R., Federspiel N., Abola A., Proctor M., Myers R., Schmutz J., Dickson M., Grimwood J., Cox D., Olson M., Kaul R., Raymond C., Shimizu N., Kawasaki K., Minoshima S., Evans G., Athanasiou M., Schultz R., Roe B., Chen F., Pan H., Ramser J., Lehrach H., Reinhardt R., McCombie W., de la Bastide M., Dedhia N., Blöcker H., Hornischer K., Nordsiek G., Agarwala R., Aravind L., Bailey J., Bateman A., Batzoglou S., Birney E., Bork P., Brown D., Burge C., Cerutti L., Chen H., Church D., Clamp M., Copley R., Doerks T., Eddy S., Eichler E., Furey T., Galagan J., Gilbert J., Harmon C., Hayashizaki Y., Haussler D., Hermjakob H., Hokamp K., Jang W., Johnson L., Jones T., Kasif S., Kaspryzk A., Kennedy S., Kent W., Kitts P., Koonin E., Korf I., Kulp D., Lancet D., Lowe T., McLysaght A., Mikkelsen T., Moran J., Mulder N., Pollara V., Ponting C., Schuler G., Schultz J., Slater G., Smit A., Stupka E., Szustakowki J., Thierry-Mieg D., Thierry-Mieg J., Wagner L., Wallis J., Wheeler R., Williams A., Wolf Y., Wolfe K., Yang S., Yeh R., Collins F., Guyer M., Peterson J., Felsenfeld A., Wetterstrand K., Patrinos A., Morgan M., de P., Jong J. Catanese, Osoegawa K., Shizuya H., Choi S, Chen Y., and Szustakowki J., Initial sequencing and analysis of the human genome, Nature 409(6822), 860 (2001) - PubMed
    1. Kazazian J., HH C. Wong, Youssoufian H., Scott A., Phillips D., and Antonarakis S., Haemophilia a resulting from de novo insertion of l1 sequences represents a novel mechanism for mutation in man, Nature 332(6160), 164 (1988) - PubMed

Publication types

LinkOut - more resources