Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2025 Sep:274:104616.
doi: 10.1016/j.jconhyd.2025.104616. Epub 2025 Jun 2.

Comparison of Ni (II) ion biosorption onto Eupatorium Adinophorum and Acer Oblongum biomass using batch operations, response surface models, thermodynamics, kinetics, and equilibrium studies

Affiliations
Comparative Study

Comparison of Ni (II) ion biosorption onto Eupatorium Adinophorum and Acer Oblongum biomass using batch operations, response surface models, thermodynamics, kinetics, and equilibrium studies

Hemant Kumar Joshi et al. J Contam Hydrol. 2025 Sep.

Abstract

The batch operations, analysis of variance (ANOVA), and response surface quadratic models (RSM) were carried out for the biosorption of Ni(II) from synthetic aqueous solution onto treated Eupatorium adinophorum (AEA) and Acer oblongum (AAO) biomass. The impact of Ni-ion concentration, pH, adsorbent dose, contact time, and reaction temperatures was investigated. The maximum removal efficiency of the Ni(II) ion onto AEA and AAO biosorbent was 87.88 % and 91.1 %, respectively, at pH 5. The biosorption capacities for AEA and AAO biomass were determined to be 33.84 mg/g and 34.42 mg/g, respectively. The analysis of the morphology and the functional group of AEA and AAO was performed by scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. Ni(II) ion biosorption was endothermic, spontaneous, and viable thermodynamically. The three adsorption isotherms, Freundlich, Dubinin-Radushkevich (D-R), and Langmuir, shows that the Langmuir model best matches the data, with regression coefficient values (Adj. R2) of more than 0.99. The kinetic model demonstrated the biosorption via a chemisorption mechanism and gave the best correlation with pseudo-second-order kinetics. The findings showed that both biomass residues have the potential to be employed as inexpensive biosorbents, but AAO has a higher ability than AEA to remove Ni(II) from wastewater.

Keywords: Acer oblongum; Biosorption; Eupatorium adinophorum; Nickel contamination.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Publication types

LinkOut - more resources