Exploring the intricacies of protein-nanoparticle interaction and its implications in chronic diseases: a comprehensive review
- PMID: 40476485
- DOI: 10.1039/d5nh00076a
Exploring the intricacies of protein-nanoparticle interaction and its implications in chronic diseases: a comprehensive review
Abstract
The protein and nanoparticle interaction is the basis of nanoparticle bio-reactivity. Nanoparticles upon interaction with proteins form a protein corona, altering their characteristics. This corona influences nanoparticles' biodistribution, pharmacokinetics, and therapeutic efficacy. The complex protein-nanoparticle interactions have a significant impact on the emergence of chronic inflammation and chronic diseases. This study is a comprehensive review that explores the dynamic nature of protein-nanoparticle interactions, emphasizing their long-term effects on sustained inflammatory responses and subsequent implications for various chronic conditions, and not an exhaustive review of all aspects. This study investigates the role of nanoparticle characteristics such as the size, shape, and surface charge in the formation of a protein corona, addressing the molecular aspects and cellular pathways involved. The connection between protein-nanoparticle interactions and chronic inflammation is deeply explored in the context of specific diseases, including cardiovascular disorders, neurological conditions, respiratory ailments, metabolic disorders, autoimmune conditions, and cancer. Insights from in vivo and clinical studies, coupled with discussions on genotoxicity, immunotoxicity, and mitigation strategies, contribute to a deeper understanding of the broader implications of these interactions. Nevertheless, this serves as a foundational framework for grasping the pivotal advancements and breakthroughs achieved via recent novel perspectives concerning the advanced methodologies for investigating protein-nanoparticle interaction and its correlation with chronic diseases. Additionally, this endeavour seeks to identify existing knowledge gaps demanding thorough exploration and offers insights for enhancing our knowledge of the interplay between protein-nanoparticle interactions and chronic disease pathogenesis. By addressing ethical considerations and public perceptions, this review outlines future research directions, highlighting the importance of extending our understanding of the safe and effective integration of nanotechnology into a broad range of applications.
Similar articles
-
Accreditation through the eyes of nurse managers: an infinite staircase or a phenomenon that evaporates like water.J Health Organ Manag. 2025 Jun 30. doi: 10.1108/JHOM-01-2025-0029. Online ahead of print. J Health Organ Manag. 2025. PMID: 40574247
-
Systemic Inflammatory Response Syndrome.2025 Jun 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jun 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31613449 Free Books & Documents.
-
Hail Lifestyle Medicine consensus position statement as a medical specialty: Middle Eastern perspective.Front Public Health. 2025 Jun 20;13:1455871. doi: 10.3389/fpubh.2025.1455871. eCollection 2025. Front Public Health. 2025. PMID: 40620567 Free PMC article.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
Management of urinary stones by experts in stone disease (ESD 2025).Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
