Perovskite-Based Triple-Junction Solar Cells
- PMID: 40478587
- DOI: 10.1002/smll.202502526
Perovskite-Based Triple-Junction Solar Cells
Abstract
Traditional perovskite solar cells utilize a single bandgap-based perovskite layer for light-to-energy conversion. In contrast, triple-junction solar cells enhance light absorption and improve power conversion efficiency (PCE) by integrating three photoactive layers with distinct bandgaps. These layers absorb different light wavelengths, enabling a broader solar spectrum capture and significantly improving PCE. By optimizing interlayer architectures, triple-junction solar cells overcome the efficiency limitations of single-junction devices. Recent lab advancements have achieved over 30% efficiency in perovskite-based triple-junction solar cells, surpassing the 27.0% PCE of single-junction perovskite cells, 27.6% for silicon-based single-junction cells, and 19.2% for organic solar cells. Nonetheless, challenges persist in enhancing PCE, improving material and device stability, addressing manufacturing complexities, and managing end-of-life disposal. Additionally, constructing multilayer structures demands precise control over interfacial and layer thickness parameters. Here, the structural principles of multijunction solar cells are explored and an in-depth analysis of various perovskite-based triple-junction configurations, including all-Perovskite, Perovskite/Perovskite/Si, and Perovskite/Perovskite/Organic combinations is provided.
Keywords: Si; perovskite; solar cell; triple‐junction.
© 2025 Wiley‐VCH GmbH.
Similar articles
-
Monolithic Perovskite/Perovskite/Silicon Triple-Junction Solar Cells: Fundamentals, Progress, and Prospects.Nanomicro Lett. 2025 Jul 21;18(1):8. doi: 10.1007/s40820-025-01836-8. Nanomicro Lett. 2025. PMID: 40690082 Free PMC article. Review.
-
Buried interface anchoring with silane coupling agents for low voltage loss and high-efficiency wide-bandgap perovskite solar cells.Sci Bull (Beijing). 2025 Jul 7:S2095-9273(25)00684-X. doi: 10.1016/j.scib.2025.07.003. Online ahead of print. Sci Bull (Beijing). 2025. PMID: 40774898
-
In Situ Grown Nanocrystalline Si Recombination Junction Layers for Efficient Perovskite-Si Monolithic Tandem Solar Cells: Toward a Simpler Multijunction Architecture.ACS Appl Mater Interfaces. 2022 Jul 27;14(29):33505-33514. doi: 10.1021/acsami.2c05662. Epub 2022 Jul 18. ACS Appl Mater Interfaces. 2022. PMID: 35849506
-
Current matched all perovskite tandem solar cells with low lead perovskites achieving 31.9% efficiency and enhanced stability.Sci Rep. 2025 Aug 13;15(1):29724. doi: 10.1038/s41598-025-99575-8. Sci Rep. 2025. PMID: 40804298 Free PMC article.
-
Perovskite Tandems: the Next Big Leap in Photovoltaic Technology.Adv Mater. 2025 Jul 25:e08331. doi: 10.1002/adma.202508331. Online ahead of print. Adv Mater. 2025. PMID: 40709832 Review.
References
-
- S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
-
- C. S. Ponseca, Jr., T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, V. Sundstrom, J. Am. Chem. Soc. 2014, 136, 5189.
-
- D. Gao, R. Li, X. Chen, C. Chen, C. Wang, B. Zhang, M. Li, X. Shang, X. Yu, S. Gong, T. Pauporté, H. Yang, L. Ding, J. Tang, J. Chen, Adv. Mater. 2023, 35, 23.
-
- H. Zhang, X. Yu, M. Li, Z. Zhang, Z. Song, X. Zong, G. Duan, W. Zhang, C. Chen, W. H. Zhang, Y. Liu, M. Liang, Angew. Chem., Int. Ed. 2023, 62, 52.
-
- C. Chen, S. Zheng, H. Song, Chem. Soc. Rev. 2021, 50, 7250.
Publication types
Grants and funding
- 0009/2022/AGJ/Science and Technology Development Fund, Macau SAR
- 24464401D/the S&T Program of Hebei
- E2024202086/Natural Science Foundation of Hebei Province
- E2024202300/Natural Science Foundation of Hebei Province
- 226Z4305G/Central Guidance on Local Science and Technology Development Fund of Hebei Province
LinkOut - more resources
Full Text Sources
Miscellaneous