The Morphological, Behavioral, and Transcriptomic Life Cycle of Anthrobots
- PMID: 40479594
- PMCID: PMC12376695
- DOI: 10.1002/advs.202409330
The Morphological, Behavioral, and Transcriptomic Life Cycle of Anthrobots
Abstract
Fascinating aspects of morphogenetic and behavioral plasticity of living material are revealed by novel constructs that self-construct from genetically wild-type cells. Anthrobots arise from cultured adult human airway epithelial cells, developing, becoming self-motile, and acquiring neural repair capabilities without exogenous genetic circuits or inorganic scaffolds. Progress in bioengineering and regenerative medicine depends on developing a predictive understanding of collective cell behavior in novel circumstances. Toward that end, here a number of life cycle properties of Anthrobots, including their morphogenesis, maturation, and demise, are quantitatively characterized. A self-healing capacity and a remarkable reduction of epigenetic age upon morphogenesis are uncovered. Transcriptomic analysis reveals that assembling into Anthrobots drives a massive remodeling of gene expression relative to their cellular source, including several embryonic patterning genes, and a shift toward more evolutionarily ancient gene expression. These data reveal new aspects of engineered multicellular configurations, in which wild-type adult human cells self-assemble into an active living construct with its own distinct transcriptome, morphogenesis, and life history.
Keywords: biobots; repair; synthetic morphology; transcriptomics.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
This work was supported by Astonishing Labs, which provides a sponsored research agreement to Tufts University and operates in the regenerative medicine space.
Figures
References
-
- a) Ho C., Morsut L., Stem Cell Rep. 2021, 16, 1051; - PMC - PubMed
- b) Kim Y., Kim I., Shin K., Exp. Mol. Med. 2023, 55, 2127; - PMC - PubMed
- c) Hartmann J., Mayor R., Semin. Cell Dev. Biol. 2023, 141, 63; - PubMed
- d) Ebrahimkhani M. R., Ebisuya M., Curr. Opin. Chem. Biol. 2019, 52, 9; - PubMed
- e) Velazquez J. J., Su E., Cahan P., Ebrahimkhani M. R., Trends Biotechnol. 2018, 36, 415; - PMC - PubMed
- f) Davies J., Development 2017, 144, 1146; - PubMed
- g) Davies J. A., Cachat E., Biochem. Soc. Trans. 2016, 44, 696; - PMC - PubMed
- h) Ebrahimkhani M. R., Levin M., iScience 2021, 24, 102505; - PMC - PubMed
- i) Sample M., Boulicault M., Allen C., Bashir R., Hyun I., Levis M., Lowenthal C., Mertz D., Montserrat N., Palmer M. J., Saha K., Zartman J., Biofabrication 2019, 11, 043001; - PMC - PubMed
- j) Kamm R. D., Bashir R., Ann. Biomed. Eng. 2014, 42, 445; - PMC - PubMed
- k) Doursat R., Sanchez C., Soft Rob. 2014, 1, 110;
- l) Doursat R., Sayama H., Michel O., Nat. Comput. 2013, 12, 517.
-
- a) Kumar N., Mangla M., Cancer Chemother. Pharmacol. 2025, 95, 18; - PubMed
- b) Simo C., Serra‐Casablancas M., Hortelao A. C., Di Carlo V., Guallar‐Garrido S., Plaza‐Garcia S., Rabanal R. M., Ramos‐Cabrer P., Yague B., Aguado L., Bardia L., Tosi S., Gomez‐Vallejo V., Martin A., Patino T., Julian E., Colombelli J., Llop J., Sanchez S., Nat. Nanotechnol. 2024, 19, 554; - PMC - PubMed
- c) Bathla S., Hans M. K., Dutta S. K., Bhattacharyya S., Talukdar A., Saifi S., Bioinformation 2024, 20, 898; - PMC - PubMed
- d) Meisami A. H., Abbasi M., Mosleh‐Shirazi S., Azari A., Amani A. M., Vaez A., Golchin A., Eur. J. Pharmacol. 2022, 926, 175011. - PubMed
-
- Wehner M., Truby R. L., Fitzgerald D. J., Mosadegh B., Whitesides G. M., Lewis J. A., Wood R. J., Nature 2016, 536, 451. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources