Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 10;22(4).
doi: 10.1088/1741-2552/ade1f9.

An investigation of multimodal EMG-EEG fusion strategies for upper-limb gesture classification

Affiliations

An investigation of multimodal EMG-EEG fusion strategies for upper-limb gesture classification

Michael Pritchard et al. J Neural Eng. .

Abstract

Objective. Upper-limb gesture identification is an important problem in the advancement of robotic prostheses. Prevailing research into classifying electromyographic (EMG) muscular data or electroencephalographic (EEG) brain data for this purpose is often limited in methodological rigour, the extent to which generalisation is demonstrated, and the granularity of gestures classified. This work evaluates three architectures for multimodal fusion of EMG & EEG data in gesture classification, including a novel Hierarchical strategy, in both subject-specific and subject-independent settings.Approach. We propose an unbiased methodology for designing classifiers centred on Automated Machine Learning through Combined Algorithm Selection & Hyperparameter Optimisation (CASH); the first application of this technique to the biosignal domain. Using CASH, we introduce an end-to-end pipeline for data handling, algorithm development, modelling, and fair comparison, addressing established weaknesses among biosignal literature.Main results. EMG-EEG fusion is shown to provide significantly higher subject-independent accuracy in same-hand multi-gesture classification than an equivalent EMG classifier. Our CASH-based design methodology produces a more accurate subject-specific classifier design than recommended by literature. Our novel Hierarchical ensemble of classical models outperforms a domain-standard CNN architecture. We achieve a subject-independent EEG multiclass accuracy competitive with many subject-specific approaches used for similar, or more easily separable, problems.Significance. To our knowledge, this is the first work to establish a systematic framework for automatic, unbiased designing and testing of fusion architectures in the context of multimodal biosignal classification. We demonstrate a robust end-to-end modelling pipeline for biosignal classification problems which if adopted in future research can help address the risk of bias common in multimodal BCI studies , enabling more reliable and rigorous comparison of proposed classifiers than is usual in the domain. We apply the approach to a more complex task than typical of EMG-EEG fusion research, surpassing literature-recommended designs and verifying the efficacy of a novel Hierarchical fusion architecture.

Keywords: automated machine learning; biosignal fusion; brain-computer-interface; multimodal gesture classification.

PubMed Disclaimer

Similar articles

LinkOut - more resources