Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 20;27(24):6298-6303.
doi: 10.1021/acs.orglett.5c01388. Epub 2025 Jun 7.

Modular Assembly of Oligo(phenylenevinylene)s via Iterative Linear-Selective Oxidative Heck Reactions with Protected Boronic Acids

Affiliations

Modular Assembly of Oligo(phenylenevinylene)s via Iterative Linear-Selective Oxidative Heck Reactions with Protected Boronic Acids

Takaki Nojiri et al. Org Lett. .

Abstract

In this paper, we report the development of an iterative cross-coupling (ICC) process utilizing oxidative Heck reactions with a protected boronic acid derivative, oxazaborolidinone, for the efficient synthesis of oligo(phenylenevinylene)s (OPVs). OPVs possess a structure characterized by alternating benzene rings and alkenes, traditionally synthesized through oligomerization of halogenated styrenes. However, this conventional approach is limited in its ability to incorporate different phenylenevinylene units into a single OPV structure. To address this challenge, we have developed a palladium-catalyzed iterative oxidative Heck reaction process employing newly synthesized oxazaborolidinone-protected boronic acids. When applied to the synthesis of structurally diverse OPVs, our methodology achieved the desired products in excellent yields, demonstrating its high efficiency and practical utility in constructing complex molecular architectures.

PubMed Disclaimer

Figures

1
1
Oligo­(phenylenevinylene).
2
2
Iterative coupling strategies and problems.
3
3
This work: ICC with nonhalogenated organoborons.
1
1. para-Substituted OPV
2
2. para- and meta-Substituted OPV
3
3. ICC Including Amination and Suzuki–Miyaura Couplings

Similar articles

References

    1. Liquid crystals:

    2. Pisula W., Tomović Ž., Wegner M., Graf R., Pouderoijen M. J., Meijer E. W., Schenning A. P. H. J.. Liquid crystalline hydrogen bonded oligo­(p-phenylenevinylene)­s. Mater. Chem. 2008;18:2968–2977. doi: 10.1039/b803117g. - DOI
    3. Shimaoka E., Kunihiro M., Funahashi M.. Glass-Forming Chiral Liquid Crystalline Dimers Based on an Oligo­(phenylenevinylene) Unit Exhibiting Circularly Polarized Photoluminescence. ACS Appl. Polym. Mater. 2022;4:565–574. doi: 10.1021/acsapm.1c01448. - DOI
    4. Fluorescence:

    5. Summers M. A., Bazan G. C., Buratto S. K.. Matrix-Induced Intensity Fluctuations in the Fluorescence from Single Oligo­(phenylenevinylene) Molecules. J. Am. Chem. Soc. 2005;127:16202–16206. doi: 10.1021/ja054337i. - DOI - PubMed
    6. Optoelectronic devices:

    7. Wang S., Oldham W. J. Jr., Hudack R. A. Jr., Bazan G. C.. Synthesis, Morphology, and Optical Properties of Tetrahedral Oligo­(phenylenevinylene) Materials. J. Am. Chem. Soc. 2000;122:5695–5709. doi: 10.1021/ja992924w. - DOI
    8. Fluorescence:

    9. Nie C., Li S., Wang B., Liu L., Hu R., Chen H., Lv F., Dai Z., Wang S.. Preparation of Reactive Oligo­(p-Phenylene Vinylene) Materials for Spatial Profiling of the Chemical Reactivity of Intracellular Compartments. Adv. Mater. 2016;28:3749–3754. doi: 10.1002/adma.201600106. - DOI - PubMed
    10. Sensor:

    11. Makkad S. K.. Amine decorated polystyrene nanobeads incorporating π-conjugated OPV chromophore for picric acid sensing in water. RSC Adv. 2020;10:6497–6502. doi: 10.1039/C9RA09852F. - DOI - PMC - PubMed
    12. Photovoltaic devices:

    13. Neuteboom E. E., Meskers S. C. J., van Hal P. A., van Duren J. K. J., Meijer E. W., Janssen R. A. J., Dupin H., Pourtois G., Cornil J., Lazzaroni R., Brédas J.-L., Beljonne D.. Alternating Oligo­(p-phenylene vinylene)–Perylene Bisimide Copolymers: Synthesis, Photophysics, and Photovoltaic Properties of a New Class of Donor–Acceptor Materials. J. Am. Chem. Soc. 2003;125:8625–8638. doi: 10.1021/ja034926t. - DOI - PubMed
    14. Photocatalyst:

    15. Dong W., Qin Z., Wang K., Xiao Y., Liu X., Ren S., Li L.. Isomeric Oligo­(Phenylenevinylene)-Based Covalent Organic Frameworks with Different Orientation of Imine Bonds and Distinct Photocatalytic Activities. Angew. Chem., Int. Ed. 2023;62:e202216073. doi: 10.1002/anie.202216073. - DOI - PubMed
    16. Photocatalytic hydrogen evolution:

    17. Dong W., Xiao Y., Qin Z., Qiao B., Li L.. Partially H-bonded covalent organic frameworks for photocatalytic hydrogen evolution. J. Mater. Chem. A. 2023;11:14760–14767. doi: 10.1039/D3TA01944F. - DOI
    18. Miscellaneous:

    19. Moreland A. S., Limwongyut J., Holton S. J., Bazan G. C.. Structural modulation of membrane-intercalating conjugated oligoelectrolytes decouples outer membrane permeabilizing and antimicrobial activities. Chem. Commun. 2023;59:12172–12175. doi: 10.1039/D3CC02861E. - DOI - PubMed
    20. Gao Z., Zhang E., Zhao H., Xia S., Bai H., Huang Y., Lv F., Liu L., Wang S.. Bacteria-Mediated Intracellular Click Reaction for Drug Enrichment and Selective Apoptosis of Drug-Resistant Tumor Cells. ACS Appl. Mater. Interfaces. 2022;14:12106–12115. doi: 10.1021/acsami.2c01493. - DOI - PubMed
    21. Ajayaghosh A., Praveen V. K.. π-Organogels of Self-Assembled p-Phenylenevinylenes: Soft Materials with Distinct Size, Shape, and Functions. Acc. Chem. Res. 2007;40:644–656. doi: 10.1021/ar7000364. - DOI - PubMed
    22. Review:

    23. Segura J. L., Martín N., Guldi D. M.. Materials for organic solar cells: the C60/π-conjugated oligomer approach. Chem. Soc. Rev. 2005;34:31–47. doi: 10.1039/B402417F. - DOI - PubMed
    24. Praveen V. K., Ranjith C., Bandini E., Ajayaghosh A., Armaroli N.. Oligo­(phenylenevinylene) hybrids and self-assemblies: versatile materials for excitation energy transfer. Chem. Soc. Rev. 2014;43:4222–4242. doi: 10.1039/C3CS60406C. - DOI - PubMed
    1. Gillis E. P., Burke M. D.. A Simple and Modular Strategy for Small Molecule Synthesis: Iterative Suzuki–Miyaura Coupling of B-Protected Haloboronic Acid Building Blocks. J. Am. Chem. Soc. 2007;129:6716–6717. doi: 10.1021/ja0716204. - DOI - PubMed
    2. Lee S. J., Gray K. C., Paek J. S., Burke M. D.. Simple, Efficient, and Modular Syntheses of Polyene Natural Products via Iterative Cross-Coupling. J. Am. Chem. Soc. 2008;130:466–468. doi: 10.1021/ja078129x. - DOI - PMC - PubMed
    3. Gillis E. P., Burke M. D.. Multistep Synthesis of Complex Boronic Acids from Simple MIDA Boronates. J. Am. Chem. Soc. 2008;130:14084–14085. doi: 10.1021/ja8063759. - DOI - PMC - PubMed
    4. Knapp D. M., Gillis E. P., Burke M. D.. A General Solution for Unstable Boronic Acids: Slow-Release Cross-Coupling from Air-Stable MIDA Boronates. J. Am. Chem. Soc. 2009;131:6961–6963. doi: 10.1021/ja901416p. - DOI - PMC - PubMed
    5. Review:

    6. Gillis E. P., Burke M. D.. Iterative Cross-Coupling with MIDA Boronates: towards a General Strategy for Small-Molecule Synthesis. Aldrichimica Acta. 2009;42:17–27. - PMC - PubMed
    7. See other challenging MIDA boronates:

    8. Lv W.-X., Zeng Y.-F., Li Q., Chen Y., Tan D.-H., Yang L., Wang H.. Oxidative Difunctionalization of Alkenyl MIDA Boronates: A Versatile Platform for Halogenated and Trifluoromethylated α-Boryl Ketones. Angew. Chem., Int. Ed. 2016;55:10069–10073. doi: 10.1002/anie.201604898. - DOI - PubMed
    9. Tan D.-T., Cai Y.-H., Zeng Y.-F., Lv W.-X., Yang L., Li Q., Wang H.. Diversity-Oriented Synthesis of α-Functionalized Acylborons and Borylated Heteroarenes by Nucleophilic Ring Opening of α-Chloroepoxyboronates. Angew. Chem. Int. Ed. 2019;58:13784–13788. doi: 10.1002/anie.201907349. - DOI - PubMed
    1. BDAN:

    2. Noguchi H., Hojo K., Suginome M.. Boron-Masking Strategy for the Selective Synthesis of Oligoarenes via Iterative Suzuki–Miyaura Coupling. J. Am. Chem. Soc. 2007;129:758–759. doi: 10.1021/ja067975p. - DOI - PubMed
    3. Noguchi H., Shioda T., Chou C. M., Suginome M.. Differentially Protected Benzenediboronic Acids: Divalent Cross-Coupling Modules for the Efficient Synthesis of Boron-Substituted Oligoarenes. Org. Lett. 2008;10:377–380. doi: 10.1021/ol702420x. - DOI - PubMed
    4. Iwadate N., Suginome M.. Synthesis of masked haloareneboronic acids via iridium-catalyzed aromatic C–H borylation with 1,8-naphthalenediaminatoborane (danBH) J. Organomet. Chem. 2009;694:1713–1717. doi: 10.1016/j.jorganchem.2008.11.068. - DOI
    5. Iwadate N., Suginome M.. Synthesis of B-Protected β-Styrylboronic Acids via Iridium-Catalyzed Hydroboration of Alkynes with 1,8-Naphthalenediaminatoborane Leading to Iterative Synthesis of Oligo­(phenylenevinylene)­s. Org. Lett. 2009;11:1899–1902. doi: 10.1021/ol9003096. - DOI - PubMed
    6. Iwadate N., Suginome M.. Rhodium-catalyzed Dehydroborylation of Styrenes with Naphthalene-1,8-diaminatoborane [(dan)­BH]: New Synthesis of Masked β-Borylstyrenes as New Phenylene–Vinylene Cross-coupling Modules. Chem. Lett. 2010;39:558–560. doi: 10.1246/cl.2010.558. - DOI
    7. Iwadate N., Suginome M.. Differentially Protected Diboron for Regioselective Diboration of Alkynes: Internal-Selective Cross-Coupling of 1-Alkene-1,2-diboronic Acid Derivatives. J. Am. Chem. Soc. 2010;132:2548–2549. doi: 10.1021/ja1000642. - DOI - PubMed
    8. Recent progress:

    9. Tomota K., Li J., Tanaka H., Nakamoto M., Tsushima T., Yoshida H.. Weak Base-Promoted Direct Cross-Coupling of Naphthalene-1,8-diaminato-substituted Arylboron Compounds. J. Am. Chem. Soc. Au. 2024;4:3931–3941. doi: 10.1021/jacsau.4c00665. - DOI - PMC - PubMed
    1. Tsuchiya N., Nojiri T., Nishikata T.. Oxazaborolidinones: Steric Coverage Effect of Lewis Acidic Boron Center in Suzuki–Miyaura Coupling Reactions. Chem.Eur. J. 2024;30:e202303271. doi: 10.1002/chem.202303271. - DOI - PubMed
    2. Nojiri T., Tsuchiya N., Nishikata T.. Sterically Congested Protecting Group for a Boronyl Group in Iterative Aminations. Chem.Eur. J. 2024;30:e202303953. doi: 10.1002/chem.202303953. - DOI - PubMed
    1. Miyaura N.. Cross-Coupling Reactions: A Practical Guide. Top. Curr. Chem. 2002;219:11–59. doi: 10.1007/3-540-45313-X_2. - DOI
    2. Suzuki, A. ; Brown, H. C. . Organic Synthesis Via Boranes; Aldrich: Milwaukee, WI, 2003; Vol. 3.
    3. Miyaura N., Suzuki A.. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995;95:2457–2483. doi: 10.1021/cr00039a007. - DOI

LinkOut - more resources