Enhancing Patient-Trial Matching With Large Language Models: A Scoping Review of Emerging Applications and Approaches
- PMID: 40489722
- PMCID: PMC12169815
- DOI: 10.1200/CCI-25-00071
Enhancing Patient-Trial Matching With Large Language Models: A Scoping Review of Emerging Applications and Approaches
Abstract
Purpose: Patient recruitment remains a major bottleneck in clinical trial execution, with inefficient patient-trial matching often causing delays and failures. Recent advancements in large language models (LLMs) offer a promising avenue for automating and improving this process. This scoping review aims to provide a comprehensive synthesis of the emerging applications of LLMs in patient-trial matching.
Methods: A comprehensive search was conducted in PubMed, Web of Science, and OpenAlex for literature published between December 1, 2022, and December 31, 2024. Studies were included if they explicitly integrated LLMs into patient-trial matching systems. Data extraction focused on system architectures, patient data processing, eligibility criteria processing, matching techniques, evaluation metrics, and performance.
Results: Of the 2,357 studies initially identified, 24 met the inclusion criteria. The majority (21/24) were published in 2024, highlighting the rapid adoption of LLMs in this domain. Most systems used patient-centric matching (17/24), with OpenAI's generative pretrained transformer models being the most commonly used LLM. Core components of these systems included eligibility criteria processing, patient data processing, and matching, with some incorporating retrieval algorithms to enhance computational efficiency. LLM-integrated approaches demonstrated improved accuracy and scalability in patient-trial matching, although challenges such as performance variability, interpretability, and reliance on synthetic data sets remain significant.
Conclusion: LLM-based patient-trial matching systems present a transformative opportunity to enhance the efficiency and accuracy of clinical trial recruitment. Despite current limitations related to model generalizability, explainability, and data constraints, future advancements in hybrid modeling strategies, domain-specific fine-tuning, and real-world data set integration could further optimize LLM-based trial matching. Addressing these challenges will be crucial to realizing the full potential of LLMs in streamlining patient recruitment and accelerating clinical trial execution.
Conflict of interest statement
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to
Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (
No other potential conflicts of interest were reported.
Figures
References
-
- Nipp RD, Hong K, Paskett ED: Overcoming barriers to clinical trial enrollment. Am Soc Clin Oncol Educ Book 39:105-114, 2019 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
