Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 9;15(24):19417-19420.
doi: 10.1039/d5ra03000e. eCollection 2025 Jun 4.

[4 + 2] Cycloaddition of α-bromotrifluoromethylhydrazone with alkenes: synthesis of trifluoromethyltetrahydropyridazines

Affiliations

[4 + 2] Cycloaddition of α-bromotrifluoromethylhydrazone with alkenes: synthesis of trifluoromethyltetrahydropyridazines

Yanhui Zhao et al. RSC Adv. .

Abstract

A catalyst-free [4 + 2] cyclization process between trifluoromethyl-containing 1,2-diazabuta-1,3-diene and simple olefins was developed by in situ generation. Under mild conditions, trifluoromethyl-containing 1,4,5,6-tetrahydropyridazine compounds were obtained, in high yields (up to 96% yields).

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Selected examples of α-bromoacylhydrazones participated cycloaddition reactions.
Scheme 2
Scheme 2. Substrate scope of hydrazonesa,b. aAll reactions were carried out by using 0.2 mmol of 1, 3 eq. of 2a and 2 eq. of Na2CO3 in 3 mL of CH2Cl2. bIsolated yields.
Scheme 3
Scheme 3. Substrate scope for simple alkenesa,b. aAll reactions were carried out by using 0.2 mmol of 1a, 3 eq. of 2 and 2 eq. of Na2CO3 in 3 mL of CH2Cl2. bIsolated yields.
Scheme 4
Scheme 4. Substrate scope for hydrazone 1m with substituted styrenesa,b. aAll reactions were carried out by using 0.2 mmol of 1m, 3 eq. of 2 and 2 eq. of Na2CO3 in 3 mL of CH2Cl2. bIsolated yields.
Scheme 5
Scheme 5. Proposed reaction mechanism.

References

    1. Xu S. Chen R. Qin Z. Wu G. He Z. Org. Lett. 2012;14:996–999. - PubMed
    2. Na R. Jing C. Xu Q. Jiang H. Wu X. Shi J. Zhong J. Wang M. Benitez D. Tkatchouk E. Goddard W. A. Guo H. Kwon O. J. Am. Chem. Soc. 2011;133:13337–13348. - PMC - PubMed
    3. Shen L. Sun L. Ye S. J. Am. Chem. Soc. 2011;133:15894–15897. - PubMed
    4. Zhang Q. Yang L. Tong X. J. Am. Chem. Soc. 2010;132:2550–2551. - PubMed
    5. Oelke A. J. France D. J. Hofmann T. Wuitschik G. Ley S. V. Angew. Chem. 2010;122:6275–6278. - PubMed
    1. Wermuth C. G. Schlewer G. Bourguignon J. J. Maghioros G. Bouchet M.-J. Moire C. Kan J.-P. Worms P. Biziere K. J. Med. Chem. 1989;32:528–537. - PubMed
    1. Müller K. Faeh C. Diederich F. Science. 2007;317:1881–1886. - PubMed
    2. Zhou Y. Wang J. Gu Z. Wang S. Zhu W. Aceña J. L. Soloshonok V. A. Izawa K. Liu H. Chem. Rev. 2016;116:422–518. - PubMed
    3. Hagmann W. K. J. Med. Chem. 2008;51:4359–4369. - PubMed
    1. Zhang C. Org. Biomol. Chem. 2014;12:6580–6589. - PubMed
    2. Chu L. Qing F.-L. Acc. Chem. Res. 2014;47:1513–1522. - PubMed
    3. Liu X. Xu C. Wang M. Liu Q. Chem. Rev. 2015;115:683–730. - PubMed
    4. Charpentier J. Früh N. Togni A. Chem. Rev. 2015;115:650–682. - PubMed
    1. Sim J. H. Park J. H. Maity P. Song C. E. Org. Lett. 2019;21:6715–6719. - PubMed
    2. Chen Z. Ren N. Ma X. Nie J. Zhang F.-G. Ma J.-A. ACS Catal. 2019;9:4600–4608.
    3. Trulli L. Sciubba F. Fioravanti S. Tetrahedron. 2018;74:572–577.
    4. Trulli L. Raglione V. Fioravanti S. Eur. J. Org Chem. 2018:3743–3749.
    5. Mszar W. N. Mikus M. S. Torker S. Haeffner F. H Hoveyda A. Angew. Chem., Int. Ed. 2017;56:8736–8741. - PMC - PubMed
    6. Miyagawa M. Yoshida M. Kiyota Y. Akiyama T. Chem.–Eur. J. 2019;25:5677–5681. - PubMed

LinkOut - more resources