Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep:269:108863.
doi: 10.1016/j.cmpb.2025.108863. Epub 2025 Jun 4.

Cognitive Lab: A dataset of biosignals and HCI features for cognitive process investigation

Affiliations

Cognitive Lab: A dataset of biosignals and HCI features for cognitive process investigation

Inês Silveira et al. Comput Methods Programs Biomed. 2025 Sep.

Abstract

Background and objective: Attention, cognitive workload/fatigue, and emotional states significantly influence learning outcomes, cognitive performance, and human-machine interactions. However, existing assessment methodologies fail to fully capture the multimodal nature of these cognitive processes, limiting their application in adaptive learning environments. This study presents the Cognitive Lab, a comprehensive multimodal dataset designed to investigate these cognitive processes across real-time learning scenarios. Specifically, it aims to capture and enable the classification of (1) attention and cognitive workload states using standard cognitive tasks, (2) cognitive fatigue arising from prolonged digital activities, and (3) emotional and learning states during interactive lessons.

Methods: The Cognitive Lab dataset consists of three distinct subsets, each developed through specific experimental scenarios targeting different aspects of learning. Dataset 1 comprises recordings from eight participants performing N-Back and mental subtraction tasks, aimed at assessing attention and cognitive workload. Dataset 2 includes data from 10 participants engaged in a digital lesson, complemented by Corsi block-tapping and concentration tasks, to evaluate cognitive fatigue. Lastly, Dataset 3 captures data from 18 participants during an interactive Jupyter Notebook lesson, focusing on emotional states and learning processes. Each scenario combined biosignals (accelerometry, ECG, EDA, EEG, fNIRS, respiration) with Human-Computer Interaction (HCI) features (mouse-tracking, keyboard activity, screenshots). Machine learning models were applied to classify cognitive states, with cross-validation ensuring robust results.

Results: The dataset enabled accurate classification of learning states, achieving up to 87% accuracy in differentiating learning states using mouse-tracking data. Furthermore, it successfully differentiated attention, cognitive workload, and cognitive fatigue states using biosignal and HCI data, with fNIRS, EEG, and ECG emerging as key contributors to classification performance. Variability across participants highlighted the potential for subject-specific calibration to enhance model accuracy.

Conclusions: The Cognitive Lab dataset represents a resource for investigating cognitive phenomena in real-world learning scenarios. Its integration of biosignals and HCI features enables the classification of cognitive states and supports advancements in adaptive learning systems, cognitive neuroscience, and brain-computer interface technologies.

Keywords: Attention; Biosignals; Cognitive fatigue; Cognitive states; Cognitive workload; HCI; Learning; Learning states.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: H.G. is affiliated with PLUX Wireless Biosignals, the company that produces the acquisition devices used in this work and also the software used to acquire the physiological signals.

LinkOut - more resources