This is a preprint.
VesicleVoyager: In vivo selection of surface displayed proteins that direct extracellular vesicles to tissue-specific targets
- PMID: 40501867
- PMCID: PMC12157350
- DOI: 10.1101/2025.06.04.657858
VesicleVoyager: In vivo selection of surface displayed proteins that direct extracellular vesicles to tissue-specific targets
Abstract
The development of technologies for screening proteins that bind to specific tissues in vivo and facilitate delivery of large cargos remains challenging, with most approaches limited to cell culture systems that often yield clinically irrelevant hits. To overcome this limitation, we developed a novel molecular screening platform using an extracellular vesicle (EV) display library. EVs are natural molecular carriers capable of delivering diverse cargos, which can be engineered to enhance specificity and targeting through surface modifications. We constructed an EV-display library presenting monobody repertoires on EV surfaces, with genetic cargo inside the EVs corresponding to the displayed proteins. These libraries were screened for tissue specific delivery through serial passage in mice via sequential intravenous administration in and recovery of tissue-selected EVs and amplification of their encapsulated monobody genes at each passage. Our results demonstrated successful selection of tissue-specific targeting proteins, as revealed by fluorescence and bioluminescence imaging followed by DNA sequencing. To understand the stochastic relationship between displayed proteins and packaged genes, we developed a Markov chain model that quantified selection dynamics and predicted enrichment patterns despite the imperfect correlation between phenotype and genotype. This EV-based monobody screening approach, combined with mathematical modeling, is a significant advancement in targeted drug delivery by leveraging the natural capabilities of EVs with the selection of targeting proteins in a physiologically relevant environment.
Keywords: Extracellular vesicles; Markov chain modeling; in vivo screening; ligand display screening; nanodrugs; targeted delivery.
Conflict of interest statement
Disclosure statement No potential conflict of interest was reported by the author(s).
Figures






Similar articles
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
Factors that influence parents' and informal caregivers' views and practices regarding routine childhood vaccination: a qualitative evidence synthesis.Cochrane Database Syst Rev. 2021 Oct 27;10(10):CD013265. doi: 10.1002/14651858.CD013265.pub2. Cochrane Database Syst Rev. 2021. PMID: 34706066 Free PMC article.
-
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.Health Soc Care Deliv Res. 2025 Jun;13(24):1-120. doi: 10.3310/HGTQ8159. Health Soc Care Deliv Res. 2025. PMID: 40548558
-
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.Health Technol Assess. 2006 Aug;10(28):iii-iv, xi-xiv, 1-183. doi: 10.3310/hta10280. Health Technol Assess. 2006. PMID: 16904047
References
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources