Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Loss of UFMylation supports prostate cancer metastasis and rewires cell metabolism towards hexosamine biosynthesis

Laura Bozal-Basterra et al. bioRxiv. .

Abstract

The acquisition of metastatic features in tumor cells encompasses genetic and non-genetic adaptation, including reprogramming of cellular metabolism. Here we show that loss of UFMylation reroutes glucose metabolism, promotes invasive capacity and supports prostate cancer metastasis. Through transcriptome-based bioinformatics analysis, we identified a reduction in the ubiquitin-like modifier UFM1 and its ligase UFL1 in metastatic prostate cancer. We demonstrate that loss of UFMylation results in enhanced cancer cell dissemination and a switch from cellular proliferation to invasion. Using biotin-based proteomics, we identified phosphofructokinase (PFKAP) as an unprecedented UFMylation substrate. Consistent with UFMylation playing a role in the regulation of phosphofructokinase activity, loss of UFMylation reduced glucose metabolism in favour of hexosamine biosynthesis, which resulted in elevated glycosylation of proteins relevant for cell invasion. These results reveal a role for UFMylation in the regulation of phosphofructokinase and glucose metabolism to support prostate cancer metastasis.

PubMed Disclaimer

Publication types

LinkOut - more resources