Synthesis, Characterization and Catalytic Activity of Iron, Cobalt and Nickel Complexes Bearing an N‑Heterocyclic Carbene-Based PCP Pincer Ligand
- PMID: 40510926
- PMCID: PMC12152947
- DOI: 10.1021/acs.organomet.5c00172
Synthesis, Characterization and Catalytic Activity of Iron, Cobalt and Nickel Complexes Bearing an N‑Heterocyclic Carbene-Based PCP Pincer Ligand
Abstract
Reactions of the bis-((R2phosphanyl)-methyl)-1H-benzo-[d]-imidazole-3-ium hexafluorophosphate precursors [(PCP-R)-H]-PF6 (R = iPr, Ph) with zerovalent precursors [Fe3(CO)12], [Co2(CO)8], [Ni-(COD)2] and [Ni-(PPh3)4], respectively, gave rise to the cationic iron, cobalt and nickel complexes [Fe-(PCP-iPr)-(CO)2H]-PF6 (1), [Co-(PCP-iPr)-(CO)2]-PF6 (2), [Co-(PCP-Ph)-(CO)2]-PF6 (3), [Ni-(PCP-iPr)-(cyclooct-4-en-1-yl)]-PF6 (4) and [Ni-(PCP-iPr)-H]-PF6 (5), by oxidative addition of the benzimidazolium CH bond in [(PCP-R)-H]-PF6. The complexes bearing the bidentate ligand 3-((diisopropylphosphanyl)-methyl)-1-methyl-1H-benzo-[d]-imidazolidene PC-iPr [Fe-(PC-iPr)-(CO)3] (6) and [Fe-(PC-iPr)-(CO)3H]-BF4 (7) were also synthesized. All complexes were characterized by NMR and FTIR spectroscopies, high resolution mass spectrometry and selected cases by single-crystal X-ray diffraction. Cobalt complexes 2 and 3 were catalytically active in the hydroboration of styrene with pinacolborane (HBPin) using 1 mol % of precatalyst and 2 mol % of KOtBu in THF at 70 °C for 18 h with yields of 87-93%. In addition, complex 2 also catalyzed the hydroboration of terminal alkenes in good yields (68-88%). Reaction of complex 2 with 5 equivs of HBPin and 2 equivs of KOtBu in THF gave rise to the cobalt-(I) hydride complex [Co-(κ2-(P,C)-PCP-iPr)-H-(CO)2] (8), indicating that the mechanism of the catalytic process follows a cobalt-(I) hydride pathway.
© 2025 The Authors. Published by American Chemical Society.
Figures






Similar articles
-
Base metal complexes featuring a new pyrazole-derived PCP pincer ligand.Dalton Trans. 2023 Sep 13;52(35):12410-12422. doi: 10.1039/d3dt02111d. Dalton Trans. 2023. PMID: 37594380
-
Synthesis, Structure, and Reactivity of Co(II) and Ni(II) PCP Pincer Borohydride Complexes.Organometallics. 2015 Apr 13;34(7):1364-1372. doi: 10.1021/acs.organomet.5b00075. Epub 2015 Mar 16. Organometallics. 2015. PMID: 27642212 Free PMC article.
-
Iron PCP Pincer Complexes in Three Oxidation States: Reversible Ligand Protonation To Afford an Fe(0) Complex with an Agostic C-H Arene Bond.Inorg Chem. 2018 Jul 2;57(13):7925-7931. doi: 10.1021/acs.inorgchem.8b01018. Epub 2018 Jun 21. Inorg Chem. 2018. PMID: 29926720
-
Role of ancillary ligands in selectivity towards acceptorless dehydrogenation versus dehydrogenative coupling of alcohols and amines catalyzed by cationic ruthenium(II)-CNC pincer complexes.Dalton Trans. 2023 Nov 7;52(43):15878-15895. doi: 10.1039/d3dt03149g. Dalton Trans. 2023. PMID: 37830304
-
Synthesis, characterization, and reactivity of nickel hydride complexes containing 2,6-C6H3(CH2PR2)2 (R = tBu, cHex, and iPr) pincer ligands.Inorg Chem. 2009 Jun 15;48(12):5081-7. doi: 10.1021/ic8020194. Inorg Chem. 2009. PMID: 19456134
References
-
- van Koten G.. Tuning the reactivity of metals held in a rigid lig-and environment. Pure Appl. Chem. 1989;61:1681–1694. doi: 10.1351/pac198961101681. Coining of the name “pincer”. - DOI
-
-
For reviews on pincer complexes, see:
- Gossage R. A., van de Kuil L. A., van Koten G.. Di-aminoarylnickel(II) “Pincer” Complexes: Mechanistic Considerations in the Kharasch Addition Reaction, Controlled Polymerization, and Dendrimeric Transition Metal Catalysts. Acc. Chem. Res. 1998;31:423–431. doi: 10.1021/ar970221i. - DOI
- Albrecht M., van Koten G.. Platinum Group Organometallics Based on “Pincer” Complexes: Sensors, Switches, and Catalysts. Angew. Chem., Int. Ed. 2001;40:3750–3781. doi: 10.1002/1521-3773(20011015)40:20<3750::AID-ANIE3750>3.0.CO;2-6. - DOI - PubMed
- van der Boom M. E., Milstein D.. Cyclometalated Phosphine-Based Pincer Complexes: Mechanistic Insight in Catalysis, Coordination, and Bond Activation. Chem. Rev. 2003;103:1759–1792. doi: 10.1021/cr960118r. - DOI - PubMed
- Singleton J. T.. The uses of pincer complexes in organic synthesis. Tetrahedron. 2003;59:1837–1857. doi: 10.1016/S0040-4020(02)01511-9. - DOI
- Liang L. C.. Metal complexes of chelating diarylamido phosphine ligands. Coord. Chem. Rev. 2006;250:1152–1177. doi: 10.1016/j.ccr.2006.01.001. - DOI
- The Chemistry of Pincer Compounds; Morales-Morales, D. , Jensen, C. M. , Eds.; Elsevier: Amsterdam, 2007.
- Nishiyama H.. Synthesis and use of bisoxazolinyl-phenyl pincers. Chem. Soc. Rev. 2007;36:1133–1141. doi: 10.1039/b605991k. - DOI - PubMed
- Benito-Garagorri D., Kirchner K.. Modularly Designed Transition Metal PNP and PCP Pincer Complexes based on Aminophosphines: Synthesis and Catalytic Applications. Acc. Chem. Res. 2008;41:201–213. doi: 10.1021/ar700129q. - DOI - PubMed
- Choi J., MacArthur A. H., Brookhart M., Goldman A. S.. Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chem. Rev. 2011;111:1761–1779. doi: 10.1021/cr1003503. - DOI - PubMed
- Selander N., Szabo K. J.. Catalysis by Palladium Pincer Complexes. Chem. Rev. 2011;111:2048–2076. doi: 10.1021/cr1002112. - DOI - PubMed
- Schneider S., Meiners J., Askevold B.. Cooperative Aliphatic PNP Amido Pincer Ligands – Versatile Building Blocks for Coordination Chemistry and Catalysis. Eur. J. Inorg. Chem. 2012;2012:412–429. doi: 10.1002/ejic.201100880. - DOI
- van Koten, G. ; Milstein, D. . Topics in Organometallic Chemistry, in Organometallic Pincer Chemistry; Springer: Berlin, 2013; Vol. 40.
- Szabo, K. J. ; Wendt, O. F. . Pincer and Pincer-type Complexes: Applications in Organic Synthesis and Catalysis; Wiley-VCH: Weinheim, Germany, 2014.
- Asay M., Morales-Morales D.. Non-symmetric pincer ligands: complexes and applications in catalysis. Dalton Trans. 2015;44:17432–17447. doi: 10.1039/C5DT02295A. - DOI - PubMed
- Murugesan S., Kirchner K.. Non-precious metal complexes with an anionic PCP pincer architecture. Dalton Trans. 2016;45:416–439. doi: 10.1039/C5DT03778F. - DOI - PubMed
-
-
- Martínez-Prieto L. M., Melero C., del Río D., Palma P., Cámpora J., Álvarez E.. Synthesis and Reactivity of Nickel and Palladium Fluoride Complexes with PCP Pincer Ligands. NMR-Based Assessment of Electron-Donating Properties of Fluoride and Other Monoanionic Ligands. Organometallics. 2012;31:1425–1438. doi: 10.1021/om2009793. - DOI
- Dauth A., Gellrich U., Diskin-Posner Y., Ben-David Y., Milstein D.. The Ferraquinone–Ferrahydroquinone Couple: Combining Quinonic and Metal-Based Reactivity. J. Am. Chem. Soc. 2017;139:2799–2807. doi: 10.1021/jacs.6b13050. - DOI - PMC - PubMed
-
- Himmelbauer D., Mastalir M., Stöger B., Veiros L. F., Pignitter M., Somoza V., Kirchner K.. Iron PCP Pincer Complexes in Three Oxidation States: Reversible Ligand Protonation To Afford an Fe(0) Complex with an Agostic C–H Arene Bond. Inorg. Chem. 2018;57:7925–7931. doi: 10.1021/acs.inorgchem.8b01018. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous