Enhancing singlet excitons delocalization via selective asymmetric fluorination of electron acceptors for efficient organic solar cells
- PMID: 40512841
- PMCID: PMC12164951
- DOI: 10.1126/sciadv.adt6024
Enhancing singlet excitons delocalization via selective asymmetric fluorination of electron acceptors for efficient organic solar cells
Abstract
Exciton dissociation in organic solar cells (OSCs) is primarily achieved through interfacial charge-transfer (CT) states, leading to a trade-off between open-circuit voltage (VOC) and short-circuit current (JSC). Spatially dispersed delocalized singlet excitons (DSEs) in nonfullerene acceptors (NFAs) provide an alternative channel to promote charge generation without interfacial CT state. Here, we manipulate intermolecular interactions, carrier dynamics, and photovoltaic properties through selective asymmetric fluorination. Two asymmetric molecules, Z12 and Z13, were synthesized by substituting the terminal group with different fluorine atoms compared with the symmetrical molecule, Z11. Z12 showed enhanced molecular interactions, promoting to more compact and ordered stacking, which in turn promotes the DSE formation, benefiting the synergistic enhancement of VOC and JSC. The D18:Z12-based device achieved a remarkable power conversion efficiency of 19.5%, notably outperforming the other two devices. Our study indicates that controlling the molecular configuration by selective fluorination to enhance the DSE formation in NFAs is an effective strategy to achieve efficient OSCs.
Figures





Similar articles
-
Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells.Acc Chem Res. 2022 Mar 15;55(6):869-877. doi: 10.1021/acs.accounts.1c00742. Epub 2022 Mar 1. Acc Chem Res. 2022. PMID: 35230078
-
Fluorination Strategy for Benzimidazole Core Based Electron Acceptors Achieving over 19% Efficiency for Ternary Organic Solar Cells.ACS Appl Mater Interfaces. 2024 Dec 18;16(50):69660-69669. doi: 10.1021/acsami.4c16494. Epub 2024 Dec 6. ACS Appl Mater Interfaces. 2024. PMID: 39641227
-
Quinoxaline-Based Wide Band Gap Polymers for Efficient Nonfullerene Organic Solar Cells with Large Open-Circuit Voltages.ACS Appl Mater Interfaces. 2018 Jul 11;10(27):23235-23246. doi: 10.1021/acsami.8b04432. Epub 2018 Jun 26. ACS Appl Mater Interfaces. 2018. PMID: 29911382
-
The Dynamics of Delocalized Excitations in Organic Solar Cells with Nonfullerene Acceptors.J Phys Chem Lett. 2023 Mar 30;14(12):3031-3038. doi: 10.1021/acs.jpclett.2c03911. Epub 2023 Mar 22. J Phys Chem Lett. 2023. PMID: 36946622 Review.
-
A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells.Polymers (Basel). 2022 Dec 29;15(1):164. doi: 10.3390/polym15010164. Polymers (Basel). 2022. PMID: 36616512 Free PMC article. Review.
References
-
- Lin Y., Wang J., Zhang Z.-G., Bai H., Li Y., Zhu D., Zhan X., An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015). - PubMed
-
- Yuan J., Zhang Y., Zhou L., Zhang G., Yip H.-L., Lau T.-K., Lu X., Zhu C., Peng H., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y., Zou Y., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).
-
- Cui Y., Yao H., Zhang J., Xian K., Zhang T., Hong L., Wang Y., Xu Y., Ma K., An C., He C., Wei Z., Gao F., Hou J., Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32, e1908205 (2020). - PubMed
-
- Li C., Zhou J., Song J., Xu J., Zhang H., Zhang X., Guo J., Zhu L., Wei D., Han G., Min J., Zhang Y., Xie Z., Yi Y., Yan H., Gao F., Liu F., Sun Y., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).
LinkOut - more resources
Full Text Sources