Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 13;11(24):eadv8640.
doi: 10.1126/sciadv.adv8640. Epub 2025 Jun 13.

Interaction between NF-κB and PLAC8 impairs autophagy providing a survival advantage to prostate cells transformed by cadmium

Affiliations

Interaction between NF-κB and PLAC8 impairs autophagy providing a survival advantage to prostate cells transformed by cadmium

Vaibhav Shukla et al. Sci Adv. .

Abstract

Prostate cancer risk is influenced by various factors, including exposure to heavy metals like cadmium (Cd). The study reveals that the autophagy-regulating gene PLAC8 (placenta-specific 8) is significantly involved in Cd-induced prostate carcinogenesis, and NF-κB acts as the upstream transcriptional activator of PLAC8, which then selectively up-regulates BCL-xL, providing a survival advantage to Cd-transformed cells. NF-κB activation stabilizes PLAC8 in the cytosol, disrupting autophagy by allowing PLAC8 to colocalize with LC3B instead of LAMP1. Silencing NF-κB down-regulates PLAC8 and its survival function while inhibiting NF-κB or PLAC8, which restores autophagy and decreases tumor growth in xenograft models. In addition, targeting BCL-xL confirmed this signaling pathway. The findings suggest that sustained NF-κB activation regulates PLAC8 and highlights the NF-κB-PLAC8-BCL-xL axis as a potential target for early detection and therapies in metal-induced prostate cancer.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.. Induction of PLAC8 leads to defective autophagy and transformation in prostate epithelial cells exposed to Cd.
(A) Western blot analysis confirming induction of autophagy signaling following chronic exposure to Cd in prostate epithelial cells. (B) Immunofluorescence of RWPE-1 and Cd-transforming cells shows an increase in percentage of cells with LC3B and PLAC8 fusion. (C) Immunofluorescence of RWPE-1 and Cd-transforming cells shows a decrease in percentage of cells with LC3B and LAMP-1fusion. (D) Immunofluorescence staining and the colocalization analysis of LC3B with LAMP1 and PLAC8 were assessed using Pearson coefficient. (E) Representative TEM images illustrating the fusion of autophagosomes and lysosomes in RWPE-1 and CTPE cells, along with quantification of autophagosomes, lysosomes, and autolysosomes per square micrometer. (F) The expression levels of PLAC8, LAMP1, and LC3B were determined by Western blot analysis in shRNA-PLAC8–transfected cells, both in the presence and absence of Cd. Veh, vehicle. (G) Immunofluorescence staining and colocalization analysis of LC3B and LAMP1 fusion with increased Pearson coefficient in sh-PLAC8 CTPE cells. (H) Representative TEM images showing fusion of autophagosomes and lysosomes in shRNA PLAC8-transfected CTPE cells compared to vector alone, along with the quantification of autophagosomes, lysosomes, and autolysosomes per square micrometer. Arrowheads indicate the following: lysosomes (blue), autophagic vacuoles (red), and autolysosomes (green). All error bars represent means ± SD. Statistical significance: *P < 0.05; ns, not significant.
Fig. 2.
Fig. 2.. Knocking down PLAC8 expression inhibits Cd-induced tumor growth in xenotransplanted mice.
(A) In CTPE cells, silencing PLAC8 expression reduced tumor formation in the xenotransplantation model. (B) Immunohistochemistry (IHC) of tumor tissues analyzed for Ki-67, PLAC8, LC3b, and LAMP1 expression. (C) A volcano plot analysis displayed the differential expression of genes in sh-PLAC8 tumors compared to the control group. (D) GSEA identified pathways associated with prostate cancer, lysosomal functions, and NF-κB–mediated TNF-α signaling in PLAC8-knockdown (PLAC8_KD) tumors compared to the vector control. (E) Cd-transforming cells showed a time-dependent induction of p65 expression (F) and NF-κB activation was observed. (G) Both cytosolic and nuclear expression of p65 were noted during the transformation of Cd-exposed RWPE-1 cells. (H) p65 binding sites on the PLAC8 promoter were identified and validated by comparing luciferase activity in wild-type and mutated (Δ) sites, transcription start sites (TSS) and (I) ChIP-qPCR was performed in CTPE cells. All error bars represent means ± SD, with statistical significance indicated as *P < 0.05, ***P < 0.001; ns, not significant. NES, normalized enrichment score.
Fig. 3.
Fig. 3.. The interaction between PLAC8 and NF-κB during the transformation of prostate epithelial cells.
(A) The interaction between p65 and PLAC8 is confirmed by immunoprecipitation (IP) analysis. IgG, immunoglobulin G. (B) CHX was used to inhibit protein synthesis in vector alone and sh-p65 cells, and Western blot (WB) analysis was performed to show that p65 is necessary to stabilize PLAC8 in CTPE cells. h, hours. (C) Immunofluorescence of RWPE-1 and Cd-transforming cells shows an increase in percentage of cells with PLAC8 and p65 colocalization. (D) Immunofluorescence staining and the colocalization analysis of p65 and PLAC8 were assessed using Pearson coefficient. (E) Ectopic expression of p65 increases PLAC8 expression in RWPE-1 cells. (F) The expression levels of p65, PLAC8, LAMP1, and LC3B were determined by Western blot analysis in sh-p65–transfected cells, both in the presence and absence of Cd. (G) Immunofluorescence staining and colocalization analysis of LC3B and LAMP1 fusion with increased Pearson coefficient in sh-p65 CTPE cells. (H) Representative TEM images showing fusion of autophagosomes and lysosomes in sh-p65–transfected CTPE cells compared to vector alone, along with the quantification of autophagosomes, lysosomes, and autolysosomes per square micrometer. Arrowheads indicate lysosomes (in blue), autophagic vacuoles (in red), and autolysosomes (in green). All error bars represent means ± SD. Statistical significance is indicated as *P < 0.05, **P < 0.01, and ****P < 0.0001.
Fig. 4.
Fig. 4.. Knockdown of p65 inhibits Cd-induced tumor growth in xenotransplanted mice.
(A) Confirmation of stable p65 knockdown in CTPE cells via Western blot analysis (left side), with selected clones inoculated into nude mice to assess tumor inhibition. (B) A volcano plot analysis illustrates the differential expression of genes in sh-p65 tumors compared to the vehicle group. (C) GSEA plot shows pathways involved in proteasome degradation, autophagy, and apoptosis in sh-p65 tumors compared to the vector control. (D) IHC analysis was performed to determine the expressions of Ki-67, p65, PLAC8, LC3B, and LAMP1 in xenograft tumors from the vector and sh-p65 groups. (E) Protein expression levels of p65, PLAC8, LC3B, and LAMP1 in xenograft tumors from sh-p65 and vector-only groups. All error bars represent means ± SD, with ***P < 0.001.
Fig. 5.
Fig. 5.. BCL-xL plays a crucial role in the survival of transformed cells and is regulated by PLAC8.
(A) Inhibiting the expression of p65 and PLAC8 enhances the induction of apoptosis in CTPE cells, confirmed by flow cytometry analysis of annexin V-FITC–stained apoptotic cells. (B) Ectopic expression of PLAC8 leads to increased levels of BCL-xL and p65 in RWPE-1 cells. (C) The expression of BCL-xL is observed at successive stages of Cd exposure during the transformation of RWPE-1 cells. (D) Silencing BCL-xL expression abolishes the PLAC8-mediated autophagy signaling in CTPE cells. (E) Ectopic expression of BCL-xL results in up-regulating PLAC8 and p65 in RWPE-1 cells. (F) In CTPE cells, cotransfection with sh-PLAC8 and the pCMV p65 overexpression plasmid demonstrated PLAC8, p65, and BCL-xL protein levels through Western blot analysis. (G) A luciferase assay showing increased BCL-xL promoter activity in CTPE cells compared to RWPE-1 cells. All error bars represent means ± SD, with statistical significance at *P < 0.05.
Fig. 6.
Fig. 6.. Inhibition of BCL-xL suppresses PLAC8-mediated tumorigenesis in a xenotransplanted model.
(A) The intraperitoneal injection of a pharmacological inhibitor of BCL-xL (A-1155643) and (B) stably suppressing BCL-xL in CTPE cells significantly inhibits tumor growth. (C) IHC analysis of Ki-67, p65, PLAC8, LC3B, and LAMP1 expression in both vector and sh–BCL-xL groups. (D) A volcano plot analysis demonstrated the differential expression of genes in the shBCL-xL tumors compared to the vehicle group. (E) GSEA revealed alterations in the unfolded protein response, autophagy, and apoptosis pathways in sh–BCL-xL tumors compared to the vector group. All error bars represent means ± SD. **P < 0.01 and ****P < 0.0001.
Fig. 7.
Fig. 7.. Validation p65, PLAC8, and BCL-xL expression in prostate cancer specimens.
(A) On the basis of the Cd levels, reverse transcription qPCR was performed to validate p65, PLAC8, and BCL-xL mRNA expression levels in prostate cancer specimens. wt., weight. (B) Expression analysis of p65, PLAC8, and BCL-xL was conducted using TCGA PRAD patients’ datasets. Statistical significance levels are *P < 0.05, **P < 0.01, and ****P < 0.0001.

References

    1. Klionsky D. J., Abdalla F. C., Abeliovich H., Abraham R. T., Acevedo-Arozena A., Adeli K., Agholme L., Agnello M., Agostinis P., Aguirre-Ghiso J. A., un Ahn H. J., Ait-Mohamed O., Ait-Si-Ali S., Akematsu T., Akira S., Al-Younes H. M., Al-Zeer M. A., Albert M. L., Albin R. L., Alegre-Abarrategui J., rancesca Aleo M. F., Alirezaei M., Almasan A., Almonte-Becerril M., Amano A., Amaravadi R., Amarnath S., Amer A. O., Andrieu-Abadie N., Anantharam V., Ann D. K., Anoopkumar-Dukie S., Aoki H., Apostolova N., Arancia G., Aris J. P., Asanuma K., Asare N. Y. O., Ashida H., Askanas V., Askew D. S., Auberger P., Baba M., Backues S. K., Baehrecke E. H., Bahr B. A., Bai X. Y., Bailly Y., Baiocchi R., Baldini G., Balduini W., Ballabio A., Bamber B. A., Bampton E. T. W., Bánhegyi G., Bartholomew C. R., Bassham D. C., Bast R. C., Batoko H., Bay B. H., Beau I., Béchet D. M., Begley T. J., Behl C., Behrends C., Bekri S., Bellaire B., Bendall L. J., Benetti L., Berliocchi L., Bernardi H., Bernassola F., Besteiro S., Bhatia-Kissova I., Bi X., Biard-Piechaczyk M., Blum J. S., Boise L. H., Bonaldo P., Boone D. L., Bornhauser B. C., Bortoluci K. R., Bossis I., Bost F., Bourquin J. P., Boya P., Boyer-Guittaut M., Bozhkov P. V., Brady N. R., Brancolini C., Brech A., Brenman J. E., Brennand A., Bresnick E. H., Brest P., Bridges D., Bristol M. L., Brookes P. S., Brown E. J., Brumell J. H., Brunetti-Pierri N., Brunk U. T., Bulman D. E., Bultman S. J., Bultynck G., Burbulla L. F., Bursch W., Butchar J. P., Buzgariu W., Bydlowski S. P., Cadwell K., Cahová M., Cai D., Cai J., Cai Q., Calabretta B., Calvo-Garrido J., Camougrand N., Campanella M., Campos-Salinas J., Candi E., Cao L., Caplan A. B., Carding S. R., Cardoso S. M., Carew J. S., Carlin C. R., Carmignac V., Carneiro L. A. M., Carra S., Caruso R. A., Casari G., Casas C., Castino R., Cebollero E., Cecconi F., Celli J., Chaachouay H., Chae H. J., Chai C. Y., Chan D. C., Chan E. Y., Chang R. C.-C., Che C. M., Chen C. C., Chen G. C., Chen G. Q., Chen M., Chen Q., Chen S. S. L., Chen W. L., Chen X., Chen X., Chen X., Chen Y. G., Chen Y., Chen Y., Chen Y. J., Chen Z., Cheng A., Cheng C. H. K., Cheng Y., Cheong H., Cheong J. H., Cherry S., Chess-Williams R., Cheung Z. H., Chevet E., Chiang H. L., Chiarelli R., Chiba T., Chin L. S., Chiou S. H., Chisari F. V., Cho C. H., Cho D. H., Choi A. M. K., Choi D. S., ook Choi K. S., Choi M. E., Chouaib S., Choubey D., Choubey V., Chu C. T., Chuang T. H., Chueh S. H., Chun T., Chwae Y. J., Chye M. L., Ciarcia R., Ciriolo M. R., Clague M. J., Clark R. S. B., Clarke P. G. H., Clarke R., Codogno P., Coller H. A., Colombo M. I., Comincini S., Condello M., Condorelli F., Cookson M. R., Coombs G. H., Coppens I., Corbalan R., Cossart P., Costelli P., Costes S., Coto-Montes A., Couve E., Coxon F. P., Cregg J. M., Crespo J. L., Cronjé M. J., Cuervo A. M., Cullen J. J., Czaja M. J., D’Amelio M., Darfeuille-Michaud A., Davids L. M., Davies F. E., De Felici M., de Groot J. F., de Haan C. A. M., De Martino L., De Milito A., De Tata V., Debnath J., Degterev A., Dehay B., Delbridge L. M. D., Demarchi F., Deng Y. Z., Dengjel J., Dent P., Denton D., Deretic V., Desai S. D., Devenish R. J., Di Gioacchino M., Di Paolo G., Di Pietro C., Díaz-Araya G., Díaz-Laviada I., Diaz-Meco M. T., Diaz-Nido J., Dikic I., Dinesh-Kumar S. P., Ding W. X., Distelhorst C. W., Diwan A., Djavaheri-Mergny M., Dokudovskaya S., Dong Z., Dorsey F. C., Dosenko V., Dowling J. J., Doxsey S., Dreux M., Drew M. E., Duan Q., Duchosal M. A., Duff K., Dugail I., Durbeej M., Duszenko M., Edelstein C. L., Edinger A. L., Egea G., Eichinger L., Eissa N. T., Ekmekcioglu S., El-Deiry W. S., Elazar Z., Elgendy M., Ellerby L. M., Eng K. E., Engelbrecht A. M., Engelender S., Erenpreisa J., Escalante R., Esclatine A., Eskelinen E. L., Espert L., Espina V., Fan H., Fan J., Fan Q. W., Fan Z., Fang S., Fang Y., Fanto M., Fanzani A., Farkas T., Farré J. C., Faure M., Fechheimer M., Feng C. G., Feng J., Feng Q., Feng Y., Fésüs L., Feuer R., Figueiredo-Pereira M. E., Fimia G. M., Fingar D. C., Finkbeiner S., Finkel T., Finley K. D., Fiorito F., Fisher E. A., Fisher P. B., Flajolet M., Florez-McClure M. L., Florio S., Fon E. A., Fornai F., Fortunato F., Fotedar R., Fowler D. H., Fox H. S., Franco R., Frankel L. B., Fransen M., Fuentes J. M., Fueyo J., Fujii J., Fujisaki K., Fujita E., Fukuda M., Furukawa R. H., Gaestel M., Gailly P., Gajewska M., Galliot B., Galy V., Ganesh S., Ganetzky B., Ganley I. G., Gao F. B., Gao G. F., Gao J., Garcia L., Garcia-Manero G., Garcia-Marcos M., Garmyn M., Gartel A. L., Gatti E., Gautel M., Gawriluk T. R., Gegg M. E., Geng J., Germain M., Gestwicki J. E., Gewirtz D. A., Ghavami S., Ghosh P., Giammarioli A. M., Giatromanolaki A. N., Gibson S. B., Gilkerson R. W., Ginger M. L., Ginsberg H. N., Golab J., Goligorsky M. S., Golstein P., Gomez-Manzano C., Goncu E., Gongora C., Gonzalez C. D., Gonzalez R., González-Estévez C., González-Polo R. A., Gonzalez-Rey E., Gorbunov N. V., Gorski S., Goruppi S., Gottlieb R. A., Gozuacik D., Granato G. E., Grant G. D., Green K. N., Gregorc A., Gros F., Grose C., Grunt T. W., Gual P., Guan J. L., Guan K. L., Guichard S. M., Gukovskaya A. S., Gukovsky I., Gunst J., Gustafsson A. B., Halayko A. J., Hale A. N., Halonen S. K., Hamasaki M., Han F., Han T., Hancock M. K., Hansen M., Harada H., Harada M., Hardt S. E., Harper J. W., Harris A. L., Harris J., Harris S. D., Hashimoto M., Haspel J. A., Hayashi S.-i., Hazelhurst L. A., He C., He Y. W., Hébert M. J., Heidenreich K. A., Helfrich M. H., Helgason G. V., Henske E. P., Herman B., Herman P. K., Hetz C., Hilfiker S., Hill J. A., Hocking L. J., Hofman P., Hofmann T. G., Höhfeld J., Holyoake T. L., Hong M. H., Hood D. A., Hotamisligil G. S., Houwerzijl E. J., Høyer-Hansen M., Hu B., Hu C. A. A., Hu H. M., Hua Y., Huang C., Huang J., Huang S., Huang W. P., Huber T. B., Huh W. K., Hung T. H., Hupp T. R., in Hur G. M., Hurley J. B., Hussain S. N. A., Hussey P. J., in Hwang J. J., Hwang S., Ichihara A., Ilkhanizadeh S., Inoki K., Into T., Iovane V., Iovanna J. L., Ip N. Y., Isaka Y., Ishida H., Isidoro C., Isobe K.-i., Iwasaki A., Izquierdo M., Izumi Y., Jaakkola P. M., Jäättelä M., Jackson G. R., Jackson W. T., Janji B., Jendrach M., Jeon J. H., Jeung E. B., Jiang H., Jiang H., Jiang J. X., Jiang M., Jiang Q., Jiang X., Jiménez A., Jin M., Jin S., Joe C. O., Johansen T., Johnson D. E., Johnson G. V. W., Jones N. L., Joseph B., Joseph S. K., Joubert A. M., Juhász G., Juillerat-Jeanneret L., Jung C. H., Jung Y. K., Kaarniranta K., Kaasik A., Kabuta T., Kadowaki M., Kagedal K., Kamada Y., Kaminskyy V. O., Kampinga H. H., Kanamori H., Kang C., Kang K. B., Kang K. I., Kang R., Kang Y. A., Kanki T., Kanneganti T. D., Kanno H., Kanthasamy A. G., Kanthasamy A., Karantza V., Kaushal G. P., Kaushik S., Kawazoe Y., Ke P. Y., Kehrl J. H., Kelekar A., Kerkhoff C., Kessel D. H., Khalil H., Kiel J. A. K. W., Kiger A. A., Kihara A., Kim D. R., Kim D. H., Kim D. H., Kim E. K., Kim H. R., Kim J. S., Kim J. H., Kim J. C., Kim J. K., Kim P. K., Kim S. W., Kim Y. S., Kim Y., Kimchi A., Kimmelman A. C., King J. S., Kinsella T. J., Kirkin V., Kirshenbaum L. A., Kitamoto K., Kitazato K., Klein L., Klimecki W. T., Klucken J., Knecht E., Ko B. C. B., Koch J. C., Koga H., Koh J. Y., Koh Y. H., Koike M., Komatsu M., Kominami E., Kong H. J., Kong W. J., Korolchuk V. I., Kotake Y., Koukourakis M. I., Flores J. B. K., Kovács A. L., Kraft C., Krainc D., Krämer H., Kretz-Remy C., Krichevsky A. M., Kroemer G., Krüger R., Krut O., Ktistakis N. T., Kuan C. Y., Kucharczyk R., Kumar A., Kumar R., Kumar S., Kundu M., Kung H. J., Kurz T., Kwon H. J., La Spada A. R., Lafont F., Lamark T., Landry J., Lane J. D., Lapaquette P., Laporte J. F., László L., Lavandero S., Lavoie J. N., Layfield R., Lazo P. A., Le W., Le Cam L., Ledbetter D. J., Lee A. J. X., Lee B. W., in Lee G. M., Lee J., Lee J. H., Lee M., Lee M. S., Lee S. H., Leeuwenburgh C., Legembre P., Legouis R., Lehmann M., Lei H. Y., Lei Q. Y., Leib D. A., Leiro J., Lemasters J. J., Lemoine A., Lesniak M. S., Lev D., Levenson V. V., Levine B., Levy E., Li F., Li J. L., Li L., Li S., Li W., Li X. J., Li Y., Li Y. P., Liang C., Liang Q., Liao Y. F., Liberski P. P., Lieberman A., Lim H. J., Lim K. L., Lim K., Lin C. F., Lin F. C., Lin J., Lin J. D., Lin K., Lin W. W., Lin W. C., Lin Y. L., Linden R., Lingor P., Lippincott-Schwartz J., Lisanti M. P., Liton P. B., Liu B., Liu C. F., Liu K., Liu L., Liu Q. A., Liu W., Liu Y. C., Liu Y., Lockshin R. A., Lok C. N., Lonial S., Loos B., Lopez-Berestein G., López-Otín C., Lossi L., Lotze M. T., Lőw P., Lu B., Lu B., Lu B., Lu Z., Luciano F., Lukacs N. W., Lund A. H., Lynch-Day M. A., Ma Y., Macian F., MacKeigan J. P., Macleod K. F., Madeo F., Maiuri L., Maiuri M. C., Malagoli D., Malicdan M. C. V., Malorni W., Man N., Mandelkow E. M., Manon S., Manov I., Mao K., Mao X., Mao Z., Marambaud P., Marazziti D., Marcel Y. L., Marchbank K., Marchetti P., Marciniak S. J., Marcondes M., Mardi M., Marfe G., Mariño G., Markaki M., Marten M. R., Martin S. J., Martinand-Mari C., Martinet W., Martinez-Vicente M., Masini M., Matarrese P., Matsuo S., Matteoni R., Mayer A., Mazure N. M., McConkey D. J., McConnell M. J., McDermott C., McDonald C., McInerney G. M., McKenna S. L., McLaughlin B. A., McLean P. J., McMaster C. R., McQuibban G. A., Meijer A. J., Meisler M. H., Meléndez A., Melia T. J., Melino G., Mena M. A., Menendez J. A., Menna-Barreto R. F. S., Menon M. B., Menzies F. M., Mercer C. A., Merighi A., Merry D. E., Meschini S., Meyer C. G., Meyer T. F., Miao C. Y., Miao J. Y., Michels P. A. M., Michiels C., Mijaljica D., Milojkovic A., Minucci S., Miracco C., Miranti C. K., Mitroulis I., Miyazawa K., Mizushima N., Mograbi B., Mohseni S., Molero X., Mollereau B., Mollinedo F., Momoi T., Monastyrska I., Monick M. M., Monteiro M. J., Moore M. N., Mora R., Moreau K., Moreira P. I., Moriyasu Y., Moscat J., Mostowy S., Mottram J. C., Motyl T., Moussa C. E. H., Müller S., Muller S., Münger K., Münz C., Murphy L. O., Murphy M. E., Musarò A., Mysorekar I., Nagata E., Nagata K., Nahimana A., Nair U., Nakagawa T., Nakahira K., Nakano H., Nakatogawa H., Nanjundan M., Naqvi N. I., Narendra D. P., Narita M., Navarro M., Nawrocki S. T., Nazarko T. Y., Nemchenko A., Netea M. G., Neufeld T. P., Ney P. A., Nezis I. P., Nguyen H. P., Nie D., Nishino I., Nislow C., Nixon R. A., Noda T., Noegel A. A., Nogalska A., Noguchi S., Notterpek L., Novak I., Nozaki T., Nukina N., Nürnberger T., Nyfeler B., Obara K., Oberley T. D., Oddo S., Ogawa M., Ohashi T., Okamoto K., Oleinick N. L., Oliver F. J., Olsen L. J., Olsson S., Opota O., Osborne T. F., Ostrander G. K., Otsu K., Ou J. J., Ouimet M., Overholtzer M., Ozpolat B., Paganetti P., Pagnini U., Pallet N., Palmer G. E., Palumbo C., Pan T., Panaretakis T., Pandey U. B., Papackova Z., Papassideri I., Paris I., Park J., Park O. K., Parys J. B., Parzych K. R., Patschan S., Patterson C., Pattingre S., Pawelek J. M., Peng J., Perlmutter D. H., Perrotta I., Perry G., Pervaiz S., Peter M., Peters G. J., Petersen M., Petrovski G., Phang J. M., Piacentini M., Pierre P., Pierrefite-Carle V., Pierron G., Pinkas-Kramarski R., Piras A., Piri N., Platanias L. C., Pöggeler S., Poirot M., Poletti A., Poüs C., Pozuelo-Rubio M., Prætorius-Ibba M., Prasad A., Prescott M., Priault M., Produit-Zengaffinen N., Progulske-Fox A., Proikas-Cezanne T., Przedborski S., Przyklenk K., Puertollano R., Puyal J., Qian S. B., Qin L., Qin Z. H., Quaggin S. E., Raben N., Rabinowich H., Rabkin S. W., Rahman I., Rami A., Ramm G., Randall G., Randow F., Rao V. A., Rathmell J. C., Ravikumar B., Ray S. K., Reed B. H., Reed J. C., Reggiori F., Régnier-Vigouroux A., Reichert A. S., Reiners J. J., Reiter R. J., Ren J., Revuelta J. L., Rhodes C. J., Ritis K., Rizzo E., Robbins J., Roberge M., Roca H., Roccheri M. C., Rocchi S., Rodemann H. P., Córdoba S. R., Rohrer B., Roninson I. B., Rosen K., Rost-Roszkowska M. M., Rouis M., Rouschop K. M. A., Rovetta F., Rubin B. P., Rubinsztein D. C., Ruckdeschel K., Rucker E. B., Rudich A., Rudolf E., Ruiz-Opazo N., Russo R., Rusten T. E., Ryan K. M., Ryter S. W., Sabatini D. M., Sadoshima J., Saha T., Saitoh T., Sakagami H., Sakai Y., Salekdeh G. H., Salomoni P., Salvaterra P. M., Salvesen G., Salvioli R., Sanchez A. M. J., Sánchez-Alcázar J. A., Sánchez-Prieto R., Sandri M., Sankar U., Sansanwal P., Santambrogio L., Saran S., Sarkar S., Sarwal M., Sasakawa C., Sasnauskiene A., Sass M., Sato K., Sato M., Schapira A. H. V., Scharl M., Schätzl H. M., Scheper W., Schiaffino S., Schneider C., Schneider M. E., Schneider-Stock R., Schoenlein P. V., Schorderet D. F., Schüller C., Schwartz G. K., Scorrano L., Sealy L., Seglen P. O., Segura-Aguilar J., Seiliez I., Seleverstov O., Sell C., Seo J. B., Separovic D., Setaluri V., Setoguchi T., Settembre C., Shacka J. J., Shanmugam M., Shapiro I. M., Shaulian E., Shaw R. J., Shelhamer J. H., Shen H. M., Shen W. C., Sheng Z. H., Shi Y., Shibuya K., Shidoji Y., Shieh J. J., Shih C. M., Shimada Y., Shimizu S., Shintani T., Shirihai O. S., Shore G. C., Sibirny A. A., Sidhu S. B., Sikorska B., Silva-Zacarin E. C. M., Simmons A., Simon A. K., Simon H. U., Simone C., Simonsen A., Sinclair D. A., Singh R., Sinha D., Sinicrope F. A., Sirko A., Siu P. M., Sivridis E., Skop V., Skulachev V. P., Slack R. S., Smaili S. S., Smith D. R., Soengas M. S., Soldati T., Song X., Sood A. K., Soong T. W., Sotgia F., Spector S. A., Spies C. D., Springer W., Srinivasula S. M., Stefanis L., Steffan J. S., Stendel R., Stenmark H., Stephanou A., Stern S. T., Sternberg C., Stork B., Strålfors P., Subauste C. S., Sui X., Sulzer D., Sun J., Sun S. Y., Sun Z. J., Sung J. J. Y., Suzuki K., Suzuki T., Swanson M. S., Swanton C., Sweeney S. T., Sy L. K., Szabadkai G., Tabas I., Taegtmeyer H., Tafani M., Takács-Vellai K., Takano Y., Takegawa K., Takemura G., Takeshita F., Talbot N. J., Tan K. S. W., Tanaka K., Tanaka K., Tang D., Tang D., Tanida I., Tannous B. A., Tavernarakis N., Taylor G. S., Taylor G. A., Taylor J. P., Terada L. S., Terman A., Tettamanti G., Thevissen K., Thompson C. B., Thorburn A., Thumm M., Tian F. F., Tian Y., Tocchini-Valentini G., Tolkovsky A. M., Tomino Y., Tönges L., Tooze S. A., Tournier C., Tower J., Towns R., Trajkovic V., Travassos L. H., Tsai T. F., Tschan M. P., Tsubata T., Tsung A., Turk B., Turner L. S., Tyagi S. C., Uchiyama Y., Ueno T., Umekawa M., Umemiya-Shirafuji R., Unni V. K., Vaccaro M. I., Valente E. M., Van den Berghe G., van der Klei I. J., van Doorn W., van Dyk L. F., van Egmond M., van Grunsven L. A., Vandenabeele P., Vandenberghe W. P., Vanhorebeek I., Vaquero E. C., Velasco G., Vellai T., Vicencio J. M., Vierstra R. D., Vila M., Vindis C., Viola G., Viscomi M. T., Voitsekhovskaja O. V., von Haefen C., Votruba M., Wada K., Wade-Martins R., Walker C. L., Walsh C. M., Walter J., Wan X. B., Wang A., Wang C., Wang D., Wang F., Wang F., Wang G., Wang H., Wang H. G., Wang H. D., Wang J., Wang K., Wang M., Wang R. C., Wang X., Wang X., Wang Y. J., Wang Y., Wang Z., Wang Z. C., Wang Z., Wansink D. G., Ward D. M., Watada H., Waters S. L., Webster P., Wei L., Weihl C. C., Weiss W. A., Welford S. M., Wen L. P., Whitehouse C. A., Whitton J. L., Whitworth A. J., Wileman T., Wiley J. W., Wilkinson S., Willbold D., Williams R. L., Williamson P. R., Wouters B. G., Wu C., Wu D. C., Wu W. K. K., Wyttenbach A., Xavier R. J., Xi Z., Xia P., Xiao G., Xie Z., Xie Z., Xu D.-z., Xu J., Xu L., Xu X., Yamamoto A., Yamamoto A., Yamashina S., Yamashita M., Yan X., Yanagida M., Yang D. S., Yang E., Yang J. M., Yang S. Y., Yang W., Yang W. Y., Yang Z., Yao M. C., Yao T. P., Yeganeh B., Yen W. L., Yin J.-j., Yin X. M., Yoo O. J., Yoon G., Yoon S. Y., Yorimitsu T., Yoshikawa Y., Yoshimori T., Yoshimoto K., You H. J., Youle R. J., Younes A., Yu L., Yu L., Yu S. W., Yu W. H., Yuan Z. M., Yue Z., Yun C. H., Yuzaki M., Zabirnyk O., Silva-Zacarin E., Zacks D., Zacksenhaus E., Zaffaroni N., Zakeri Z., Zeh H. J., Zeitlin S. O., Zhang H., Zhang H. L., Zhang J., Zhang J. P., Zhang L., Zhang L., Zhang M. Y., Zhang X. D., Zhao M., Zhao Y. F., Zhao Y., Zhao Z. J., Zheng X., Zhivotovsky B., Zhong Q., Zhou C. Z., Zhu C., Zhu W. G., Zhu X. F., Zhu X., Zhu Y., Zoladek T., Zong W. X., Zorzano A., Zschocke J., Zuckerbraun B., Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012). - PMC - PubMed
    1. Jiang P., Mizushima N., LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75, 13–18 (2015). - PubMed
    1. Myerowitz R., Puertollano R., Raben N., Impaired autophagy: The collateral damage of lysosomal storage disorders. EBioMedicine 63, (2021). - PMC - PubMed
    1. Park H., Kang J. H., Lee S., Autophagy in neurodegenerative diseases: A hunter for aggregates. Int. J. Mol. Sci. 21, 3369 (2020). - PMC - PubMed
    1. Mathew R., Karantza-Wadsworth V., White E., Role of autophagy in cancer. Nat. Rev. Cancer 7, 961–967 (2007). - PMC - PubMed

MeSH terms