Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jun 13:S2090-1232(25)00429-1.
doi: 10.1016/j.jare.2025.06.020. Online ahead of print.

Targeting post-translational modifications: novel insights into bone metabolic diseases

Affiliations
Free article
Review

Targeting post-translational modifications: novel insights into bone metabolic diseases

Hui Kong et al. J Adv Res. .
Free article

Abstract

Background: Bone metabolic diseases constitute a group of disorders characterized by abnormal alterations in bone mass and skeletal metabolism, often resulting from oxidative stress, nutritional deficiencies, and various other etiological factors. Post-translational modification (PTM), a critical mechanism of protein regulation, plays a pivotal role in the pathogenesis of bone metabolic diseases. While previous reviews have primarily focused on the individual regulatory functions of common PTMs, such as phosphorylation, methylation, and ubiquitination, they have largely overlooked the dynamic interactions and cross talk among different PTMs. In recent years, an increasing number of novel PTMs have been implicated in the progression of bone metabolic diseases; however, comprehensive analyses of their underlying mechanisms and interrelationships remain limited. Therefore, a systematic and updated review of the roles and interplay of PTMs in bone metabolic diseases is warranted.

Aim of review: This review systematically introduced the basic processes of different types of PTMs, including phosphorylation, methylation, ubiquitination, glycosylation, acetylation, SUMOylation, succinylation, palmitoylation, lactylation, ADP-ribosylation, sulfhydration, carbonylation, hydroxylation, citrullination, and farnesylation, and summarized underlying mechanisms and cross talks among these PTMs in regulating the development of bone metabolic diseases.

Key scientific concepts of review: This review focuses on three key concepts. First, it highlights PTMs that have been implicated in the pathological process of bone metabolic diseases. Second, it examines the regulatory mechanisms and cross talks among different PTMs in bone metabolic diseases. Third, it discusses how aberrant PTMs can disrupt bone metabolic homeostasis by regulating various signaling pathways, leading to cellular dysfunction involved in the onset and development of osteoarthritis, osteoporosis, osteosarcoma, and rheumatoid arthritis. Therefore, an in-depth study of the PTM mechanisms in bone metabolic diseases may facilitate the identification of novel regulatory targets and provide a theoretical foundation for the development of more effective therapeutic strategies.

Keywords: Osteoarthritis; Osteoporosis; Osteosarcoma; Post-translational modification; Rheumatoid arthritis.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources