Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Nov 1:287:117686.
doi: 10.1016/j.bios.2025.117686. Epub 2025 Jun 13.

Composite additive manufacturing for suspended microelectrode arrays: Advancing oriented myocardial tissue culturing and electrophysiological sensing

Affiliations

Composite additive manufacturing for suspended microelectrode arrays: Advancing oriented myocardial tissue culturing and electrophysiological sensing

Mingcheng Xue et al. Biosens Bioelectron. .

Abstract

Microelectrode arrays (MEAs) have ushered in a new era of in vitro drug screening and cardiotoxicity evaluation. However, the morphological constraints of two-dimensional (2D) planar culture and the mechanical rigidity of conventional electrodes hinder the formation of myocardial tissues that closely resemble native physiological conditions and limit the accuracy of drug efficacy analysis based on electrophysiological signals. Here, we present a flexible MEA platform enabled by a composite additive manufacturing approach, with key steps including melt electrowriting of microfibers, electrostatic spraying of insulation layer, and electrospinning of nanofiber scaffolds. This design integrates suspended, flexible microfiber electrodes with tightly adhered nanofiber scaffolds, creating a 3D ordered culture environment for myocardial tissue culture while ensuring adaptable electrophysiological signal recording. The aligned nanofiber scaffolds promote oriented myocardial growth and enhance sarcomere length by 29 % compared to random fibers, resulting in a propagation speed of 15.835 cm/s. The flexible and stretchable microfiber electrodes, approximately 20 μm in diameter, conform dynamically to tissue deformation during beating. Furthermore, the platform's functional performance is validated using isoproterenol and verapamil, confirming its potential for on-chip drug screening applications. These results highlight the promise of the suspended, flexible, and aligned MEAs for on-chip drug screening.

Keywords: Electrophysiological sensing; Flexible; Melt electrowriting; Microelectrode arrays; Microfiber electrodes; Nanofiber scaffolds.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources