Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Aug;22(3):131-43.
doi: 10.1016/0301-4622(85)80035-1.

Nanosecond dynamics of charged fluorescent probes at the polar interface of a membrane phospholipid bilayer

Comparative Study

Nanosecond dynamics of charged fluorescent probes at the polar interface of a membrane phospholipid bilayer

A P Demchenko et al. Biophys Chem. 1985 Aug.

Abstract

Molecular relaxation fluorescence methods were applied to analyze the nature and characteristic times of motions of amphiphilic molecules absorbed in the polar region of a phospholipid bilayer. The fluorescence probes 2-toluidinonaphthalene-6-sulfonate and 1-anilinonaphthalene-8-sulfonate in egg phosphatidylcholine vesicles were studied. The methods of edge excitation fluorescence red shifts, nanosecond time-resolved spectroscopy, fluorescence quenching by hydrophilic and hydrophobic quenchers and emission wavelength dependence of polarization were used. The structural (dipolar) relaxation is shown to be a very rapid (subnanosecond) process. The observed nanosecond phenomena are related to translational movement of the chromophore itself towards a more polar environment and its rotation. The polar surface area of the phospholipid membrane appears to be a highly mobile liquid-like system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources