Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Nov;66(5):1171-5.

Turnover of the methyl moiety of 5-methyltetrahydropteroylglutamic acid in the cobalamin-inactivated rat

  • PMID: 4052631
Free article

Turnover of the methyl moiety of 5-methyltetrahydropteroylglutamic acid in the cobalamin-inactivated rat

M Lumb et al. Blood. 1985 Nov.
Free article

Abstract

The metabolism of the methyl group of 5-methyltetrahydrofolate was studied in rats in which cobalamin had been inactivated by exposure to nitrous oxide and in air-breathing control animals. Methylfolate labeled with [14C] in the methyl group and with [3H] in the pteridine-PABA portion was injected and the disappearance of [14C]H3- relative to [3H]folate was measured in liver. The half-time of the methyl group in the livers of control rats was two hours. There was no turnover of the methyl group for the first 72 hours after cobalamin inactivation. After 72 hours, there was a slow turnover of the methyl group, with a half-time of 43 hours. In control rats, it is assumed that the methyl group was metabolized by transfer to homocysteine to form methionine. In cobalamin-inactivated rats, it was shown that methylfolate was used as the substrate for forming folate polyglutamate, and analogues with 3, 4, and 5 glutamic acid residues were present. It is likely that oxidation of the methyl group by methylene tetrahydrofolate reductase occurs from folate polyglutamate containing six and seven glutamic acid residues, (Brody et al, Biochemistry 21: 276, 1982), since we were unable to demonstrate labeled methyl in longer chain analogues.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources