Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 2;17(26):38754-38762.
doi: 10.1021/acsami.5c07722. Epub 2025 Jun 17.

Diamine Surface Passivation and Postannealing Enhance the Performance of Silicon-Perovskite Tandem Solar Cells

Affiliations

Diamine Surface Passivation and Postannealing Enhance the Performance of Silicon-Perovskite Tandem Solar Cells

Margherita Taddei et al. ACS Appl Mater Interfaces. .

Abstract

We show that the use of 1,3-diaminopropane (DAP) as a chemical modifier at the perovskite/electron-transport layer (ETL) interface enhances the power conversion efficiency (PCE) of 1.7 eV band gap mixed-halide perovskite containing formamidinium and Cs single-junction cells, primarily by increasing the open-circuit voltage (VOC) from 1.06 to 1.15 V. We find that adding a postprocessing annealing step after C60 evaporation further improves device performance. Specifically, the fill factor (FF) increases by 20% in the DAP + postannealing devices compared to the control. Using hyperspectral photoluminescence microscopy, we demonstrate that annealing helps improve compositional homogeneity at the electron-transport layer (ETL) and hole-transport layer (HTL) interfaces of the solar cell, which prevents detrimental band gap pinning in the devices and improves C60 adhesion. Using time-of-flight secondary ion mass spectrometry, we show that DAP reacts with formamidinium (FA+) present at the surface of the perovskite structure to form a larger molecular cation, 1,4,5,6-tetrahydropyrimidinium (THP+), which remains at the interface. Combining the use of DAP and annealing the C60 interface, we fabricate Si-perovskite tandems with a PCE of 25.29%, compared to 23.26% for control devices. Our study underscores the critical role of the chemical reactivity of diamines at the surface and the thermal postprocessing of the C60/Lewis-base passivator interface in minimizing device losses and enhancing solar-cell performance of wide-band-gap mixed-cation mixed-halide perovskites for tandem applications.

Keywords: diamine; passivation; perovskite; solar cell, Si-perovskite tandem.

PubMed Disclaimer

LinkOut - more resources