Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Oct:434:132819.
doi: 10.1016/j.biortech.2025.132819. Epub 2025 Jun 15.

Synergistic membrane-biofilm-sludge system coupling partial nitritation and anammox: achieving efficient nitrogen removal in high-ammonia/low-carbon condensate wastewater

Affiliations

Synergistic membrane-biofilm-sludge system coupling partial nitritation and anammox: achieving efficient nitrogen removal in high-ammonia/low-carbon condensate wastewater

Jiazhi Yang et al. Bioresour Technol. 2025 Oct.

Abstract

Condensed wastewater treatment faces challenges from elevated ammonia-nitrogen levels (1972-2365 mg/L), a low carbon-to-nitrogen ratio (0.02-0.03), and inhibitory sulfides. To overcome these, a novel hybrid system integrating an effluent membrane-enhanced fixed-biofilm activated sludge (IFAS) reactor with partial nitritation/anammox (PN/A) was developed. The system demonstrated exceptional nitrogen removal performance at a maximum nitrogen removal rate of 1.5 kg N/(m3·d) with a nitrogen removal efficiency of 82.3 %. Denitrification enhanced advanced nitrogen removal with a low nitrate production ratio (4.5 %), minimizing secondary pollution risks. Microbial analysis revealed substantial enrichment of anaerobic ammonium-oxidizing bacteria, with Candidatus Brocadia dominating the biofilm community (24.3 %). Membrane-mediated biomass retention selectively enriched Nitrosomonas (10.1 %) in suspended sludge, while biofilm detachment promoted granular anammox biomass development and further elevated Candidatus Brocadia abundance by 4.8 %. This synergistic configuration enhances process stability for treating high-ammonia/low-carbon wastewater and promotes the practical implementation of IFAS-PN/A systems.

Keywords: IFAS; Industrial wastewater; Low COD/N ratio; Membrane separation; PN/A.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources