Differential responses of L5 and rat primary muscle cells to factors in rat brain extract
- PMID: 4052771
- DOI: 10.1016/0006-8993(85)91094-7
Differential responses of L5 and rat primary muscle cells to factors in rat brain extract
Abstract
Crude brain extract (100,000 g supernate from newborn or fetal rat brain homogenate) was studied for its effects on the number and distribution of acetylcholine receptors (AChRs) on myotubes of the L5 cloned myogenic cell line and compared to that of rat primary cultures. Gamma counting, light autoradiography and scanning electron microscopic autoradiography were used. We found that the L5 cells responded to the brain extract with an increase in the average AChR site density (2-5-fold) and with an increase in AChR clustering. Clustering was manifested by both an increase in the number of AChR clusters and in the ratio of receptor site density within clusters relative to that between clusters. The increase in average AChR site density was shown to be due to an increase in the rate of AChR insertion into the surface membrane with little change in the rate of receptor degradation. As also previously reported, the rat myotubes had a similar clustering response but only a very slight (approximately 1.2-fold) increase in average AChR site density. The surface area of myotubes was also increased slightly (approximately 1.2-1.3-fold) by the brain extract. Autoradiography viewed by scanning EM was found to be very useful in illustrating the shape and distribution of the receptor clusters. After the brain extract was fractionated on Sephadex G-200, the fractions with greatest clustering activity could be separated from those causing predominantly an increase in receptor site density. Increased receptor site density was primarily produced by the low molecular weight fractions (less than 12 kD), whereas the strongest (but not exclusive) effect on clustering was produced by the high molecular weight fractions (greater than 140 kD). Furthermore, the two cell types assayed had different sensitivity to the different factors. L5 cells responded to both the high and low molecular weight factors while rat primary cells are sensitive primarily to the high molecular weight factors.
Similar articles
-
Brain extract causes acetylcholine receptor redistribution which mimics some early events at developing neuromuscular junctions.J Cell Biol. 1982 May;93(2):417-25. doi: 10.1083/jcb.93.2.417. J Cell Biol. 1982. PMID: 7096446 Free PMC article.
-
Selective effects of ascorbic acid on acetylcholine receptor number and distribution.J Cell Biol. 1986 Mar;102(3):795-802. doi: 10.1083/jcb.102.3.795. J Cell Biol. 1986. PMID: 3949879 Free PMC article.
-
Association of cytoskeletal proteins with newly formed acetylcholine receptor aggregates induced by embryonic brain extract.Exp Cell Res. 1990 Jan;186(1):99-108. doi: 10.1016/0014-4827(90)90215-v. Exp Cell Res. 1990. PMID: 2105221
-
Reorganization and stabilization of acetylcholine receptor aggregates on rat myotubes.Dev Biol. 1989 Feb;131(2):524-38. doi: 10.1016/s0012-1606(89)80023-5. Dev Biol. 1989. PMID: 2912807
-
Regulation of acetylcholine receptor synthesis at the level of translation in rat primary muscle cells.J Cell Biol. 1989 May;108(5):1817-22. doi: 10.1083/jcb.108.5.1817. J Cell Biol. 1989. PMID: 2469678 Free PMC article.
Cited by
-
Acetylcholine receptor alpha-subunit mRNA is increased by ascorbic acid in cloned L5 muscle cells: Northern blot analysis and in situ hybridization.J Cell Biol. 1989 May;108(5):1823-32. doi: 10.1083/jcb.108.5.1823. J Cell Biol. 1989. PMID: 2715181 Free PMC article.
-
Distribution of extrajunctional acetylcholine receptors on a vertebrate muscle: evaluated by using a scanning electron microscope autoradiographic procedure.J Cell Biol. 1988 Jun;106(6):2087-93. doi: 10.1083/jcb.106.6.2087. J Cell Biol. 1988. PMID: 3384854 Free PMC article.
-
Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor alpha subunit.Proc Natl Acad Sci U S A. 1988 Mar;85(6):1983-7. doi: 10.1073/pnas.85.6.1983. Proc Natl Acad Sci U S A. 1988. PMID: 2831539 Free PMC article.
-
Effect of agrin on the distribution of acetylcholine receptors and sodium channels on adult skeletal muscle fibers in culture.J Cell Biol. 1991 Nov;115(3):765-78. doi: 10.1083/jcb.115.3.765. J Cell Biol. 1991. PMID: 1655812 Free PMC article.
-
Activity-dependent regulation of gene expression in muscle and neuronal cells.Mol Neurobiol. 1989 Spring-Summer;3(1-2):1-53. doi: 10.1007/BF02935587. Mol Neurobiol. 1989. PMID: 2679765 Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials