Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Nov;45(11 Pt 1):5553-6.

Effects of uridine and thymidine on the degradation of 5-fluorouracil, uracil, and thymine by rat liver dihydropyrimidine dehydrogenase

  • PMID: 4053028

Effects of uridine and thymidine on the degradation of 5-fluorouracil, uracil, and thymine by rat liver dihydropyrimidine dehydrogenase

M Tuchman et al. Cancer Res. 1985 Nov.

Abstract

The kinetic properties and control mechanisms of 5-fluorouracil (5-FU), uracil, and thymine degradation by rat liver dihydropyrimidine dehydrogenase were studied in vitro. The calculated Michaelis constant (Km) for 5-FU was 3.49 +/- 0.41 (SE) microM, similar to those for uracil (2.26 +/- 0.28 microM) and for thymine (2.23 +/- 0.34 microM). However, the reduction of 5-FU appears to be most sensitive to the inhibitory effects of increased substrate concentration. The specific activities of dihydropyrimidine dehydrogenase (nmol/min/mg of protein) for 5-FU, uracil, and thymine were 0.82, 0.68, and 0.56, respectively. Uridine was found to be a potent noncompetitive inhibitor of pyrimidine base degradation in vitro, displaying an inhibition constant (Ki) for 5-FU of 0.71 microM. Total inhibition of 5-FU degradation occurred at a uridine concentration of 10 microM, whereas thymidine was found to be a much less potent noncompetitive inhibitor of pyrimidine base degradation (Ki 24 microM). This paper provides the first documentation of in vitro inhibition of dihydropyrimidine dehydrogenase activity by nucleosides. The concomitant utilization of uridine and 5-FU in clinical situations might prove useful by decreasing 5-FU catabolism to toxic metabolites as well as enhancing 5-FU cytotoxicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources