Target-responsive vesicular nanoprobe for fluorescent detection of lipase
- PMID: 40533528
- DOI: 10.1007/s00604-025-07278-8
Target-responsive vesicular nanoprobe for fluorescent detection of lipase
Abstract
A novel fluorescent vesicular nanoprobe (RhB@HMCNx-PCL-PEG) is presented for lipase activity monitoring, leveraging the synergetic integration of nitrogen-deficient hollow mesoporous carbon nitride nanoparticles (HMCNx) and lipase-responsive amphiphilic block copolymers. The HMCNx, engineered via KSCN-assisted hydrothermal treatment, exhibits enhanced water dispersibility while remaining its hollow mesoporous structure, enabling efficient encapsulation of rhodamine B (RhB). Subsequent covalent conjugation of carboxyl-terminated poly(ε-caprolactone)-poly(ethylene glycol) (COOH-PCL-PEG) and self-assembly-driven vesicle formation establish a "signal-on" detection mechanism. Lipase-triggered hydrolysis of the PCL layer releases RhB, with fluorescence intensity quantitatively correlating to lipase activity. The nanoprobe achieves a low detection limit of 0.5 mU mL⁻1 (3σ) and a broad linear range (0.5 to 5 U mL⁻1). Remarkable selectivity against interferents (e.g., trypsin, α-amylase) and robust performance in real samples (milk, skin toner) underscore its practicality. This work not only advances carbon nitride-based nanomaterials for biosensing but also provides a platform for enzyme-responsive detection systems.
Keywords: Amphiphilic copolymers; Biosensing; Fluorescent nanoprobe; Graphitic carbon nitride; Lipase detection.
© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Conflict of interest statement
Declarations. Conflict of interest: The authors declare no competing interests.
Similar articles
-
Film-permeability-triggered afterglow electrochemiluminescence for lipase detection.Analyst. 2025 Jul 7;150(14):3170-3176. doi: 10.1039/d5an00486a. Analyst. 2025. PMID: 40522000
-
A Dual Emission Fluorescence Probe Based on Silicon Nanoparticles and Rhodamine B for Ratiometric Detection of Kaempferol.J Fluoresc. 2025 Jul;35(7):5261-5271. doi: 10.1007/s10895-024-03906-3. Epub 2024 Aug 26. J Fluoresc. 2025. PMID: 39186138
-
Effects of LinTT1-peptide conjugation on the properties of poly(ethylene glycol)-block-(ε-caprolactone) nanoparticles prepared by the nanoprecipitation method.Drug Deliv Transl Res. 2025 Aug;15(8):2733-2748. doi: 10.1007/s13346-024-01768-7. Epub 2025 Jan 3. Drug Deliv Transl Res. 2025. PMID: 39753999 Free PMC article.
-
Serum amylase and lipase and urinary trypsinogen and amylase for diagnosis of acute pancreatitis.Cochrane Database Syst Rev. 2017 Apr 21;4(4):CD012010. doi: 10.1002/14651858.CD012010.pub2. Cochrane Database Syst Rev. 2017. PMID: 28431198 Free PMC article.
-
Biodegradation of Poly(ε-caprolactone): Microorganisms, Enzymes, and Mechanisms.Int J Mol Sci. 2025 Jun 18;26(12):5826. doi: 10.3390/ijms26125826. Int J Mol Sci. 2025. PMID: 40565290 Free PMC article. Review.
References
-
- Jaeger K-E, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotech 13(4):390–397. https://doi.org/10.1016/s0958-1669(02)00341-5 - DOI - PubMed
-
- Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Tech 39(2):235–251. https://doi.org/10.1016/j.enzmictec.2005.10.016 - DOI
-
- Yadav D, Agarwal N, Pitchumoni C (2002) A critical evaluation of laboratory tests in acute pancreatitis. Am J Gastroenterol 97(6):1309–1318. https://doi.org/10.1016/S0002-9270(02)04122-9 - DOI - PubMed
-
- Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. New Engl J Med 371(11):1039–1049. https://doi.org/10.1056/NEJMra1404198 - DOI - PubMed
-
- Vincent A, Herman J, Schulick R, Hruban RH, Goggins M (2011) Pancreatic cancer. Lancet 378(9791):607–620. https://doi.org/10.1016/S0140-6736(10)62307-0 - DOI - PubMed - PMC
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Research Materials