Non-Invasive Diagnosis of Chronic Myocardial Infarction via Composite In-Silico-Human Data Learning
- PMID: 40536227
- DOI: 10.1002/advs.202406933
Non-Invasive Diagnosis of Chronic Myocardial Infarction via Composite In-Silico-Human Data Learning
Abstract
Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, a completely non-invasive methodology is developed to identify the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, the remarkable performance of a multi-fidelity ML model is demonstrated, which combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. The results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.
Keywords: CMR‐LGE; UNet architectures; cardiac strains; multi‐fidelity; myocardial infarction.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Similar articles
-
Multi-Modality Deep Infarct: Non-invasive identification of infarcted myocardium using composite in-silico-human data learning.bioRxiv [Preprint]. 2024 Jun 3:2024.05.31.596513. doi: 10.1101/2024.05.31.596513. bioRxiv. 2024. PMID: 38895325 Free PMC article. Preprint.
-
Multi-Modality Deep Infarct: Non-invasive identification of infarcted myocardium using composite in-silico-human data learning.Res Sq [Preprint]. 2024 Jun 5:rs.3.rs-4468678. doi: 10.21203/rs.3.rs-4468678/v1. Res Sq. 2024. PMID: 38883756 Free PMC article. Preprint.
-
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.Respir Res. 2024 Dec 21;25(1):438. doi: 10.1186/s12931-024-03056-x. Respir Res. 2024. PMID: 39709425 Free PMC article. Review.
-
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.Elife. 2025 May 23;14:RP100887. doi: 10.7554/eLife.100887. Elife. 2025. PMID: 40407808 Free PMC article.
-
Prevalence and odds of anxiety and depression in cutaneous malignant melanoma: a proportional meta-analysis and regression.Br J Dermatol. 2024 Jun 20;191(1):24-35. doi: 10.1093/bjd/ljae011. Br J Dermatol. 2024. PMID: 38197404
Cited by
-
Enhancing cardiac disease detection via a fusion of machine learning and medical imaging.Sci Rep. 2025 Jul 19;15(1):26269. doi: 10.1038/s41598-025-12030-6. Sci Rep. 2025. PMID: 40683984 Free PMC article.
References
-
- E. J. Benjamin, P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway, A. P. Carson, A. M. Chamberlain, A. R. Chang, S. Cheng, S. R. Das, F. N. Delling, L. Djousse, M. S. V. Elkind, J. F. Ferguson, M. Fornage, L. C. Jordan, S. S. Khan, B. M. Kissela, K. L. Knutson, T. W. Kwan, D. T. Lackland, T. T. Lewis, J. H. Lichtman, C. T. Longenecker, M. S. Loop, P. L. Lutsey, S. S. Martin, K. Matsushita, A. E. Moran, M. E. Mussolino, et al., Circulation 2019, 139, e56.
-
- S. S. Dani, A. N. Lone, Z. Javed, M. S. Khan, M. Zia Khan, E. Kaluski, S. S. Virani, M. D. Shapiro, M. Cainzos‐Achirica, K. Nasir, S. U. Khan, J. Am. Heart Assoc. 2022, 11, e021682.
-
- T. J. Cahill, R. K. Kharbanda, World J. Cardiol. 2017, 9, 407.
-
- O. J. Mechanic, S. A. Grossman, Acute Myocardial Infarction, StatPearls, Treasure Island, FL 2017.
-
- D. Jenča, V. Melenovskỳ, J. Stehlik, V. Staněk, J. Kettner, J. Kautzner, V. Adámková, P. Wohlfahrt, ESC heart fail. 2021, 8, 222.