Development and validation of a machine learning-based prediction model for urinary calculi recurrence
- PMID: 40536670
- DOI: 10.1007/s00240-025-01792-3
Development and validation of a machine learning-based prediction model for urinary calculi recurrence
Keywords: LASSO feature selection; Machine learning algorithms; Metabolic parameter analysis; SHAP interpretable framework; Urinary calculi recurrence.
Conflict of interest statement
Declarations. Conflict of interest: The authors declare that they have no conflicts of interest. Ethical approval: All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent: Informed consent was obtained from all individual participants.
Similar articles
-
Identifying the key influencing factors of psychological birth trauma in primiparous women with interpretable machine learning.Int J Nurs Sci. 2025 Apr 15;12(3):253-260. doi: 10.1016/j.ijnss.2025.04.008. eCollection 2025 May. Int J Nurs Sci. 2025. PMID: 40529457 Free PMC article.
-
A Machine Learning Model for Predicting Breast Cancer Recurrence and Supporting Personalized Treatment Decisions Through Comprehensive Feature Selection and Explainable Ensemble Learning.Cancer Manag Res. 2025 May 8;17:917-932. doi: 10.2147/CMAR.S514693. eCollection 2025. Cancer Manag Res. 2025. PMID: 40357238 Free PMC article.
-
Construction and Validation of a Machine Learning-Based Risk Prediction Model for Sleep Quality in Patients with OSA.Nat Sci Sleep. 2025 Jun 12;17:1271-1289. doi: 10.2147/NSS.S516912. eCollection 2025. Nat Sci Sleep. 2025. PMID: 40529656 Free PMC article.
-
Machine learning-based prediction of 6-month functional recovery in hypertensive cerebral hemorrhage: insights from XGBoost and SHAP analysis.Front Neurol. 2025 Jun 4;16:1608341. doi: 10.3389/fneur.2025.1608341. eCollection 2025. Front Neurol. 2025. PMID: 40534743 Free PMC article.
-
Emerging research trends in artificial intelligence for cancer diagnostic systems: A comprehensive review.Heliyon. 2024 Aug 23;10(17):e36743. doi: 10.1016/j.heliyon.2024.e36743. eCollection 2024 Sep 15. Heliyon. 2024. Retraction in: Heliyon. 2025 Apr 15;11(9):e43335. doi: 10.1016/j.heliyon.2025.e43335. PMID: 39263113 Free PMC article. Retracted. Review.
References
-
- Wang W, Fan J, Huang G, Li J, Zhu X, Tian Y, Su L (2017) Prevalence of kidney stones in Mainland china: A systematic review. Sci Rep 7:41630–41639. https://doi.org/10.1038/srep41630 - DOI - PubMed - PMC
-
- Tan S, Yuan D, Su H, Chen W, Zhu S, Yan B, Sun F, Jiang K, Zhu J (2024) Prevalence of urolithiasis in china: a systematic review and meta-analysis. BJU Int 133(1):34–43. https://doi.org/10.1111/bju.16179 - DOI - PubMed
-
- Zhu W, Liu Y, Lan Y, Li X, Luo L, Duan X, Lei M, Liu G, Yang Z, Mai X, Sun Y, Wang L, Lu S, Ou L, Wu W, Mai Z, Zhong D, Cai C, Zhao Z, Zhong W, Liu Y, Sun Y, Zeng G (2019) Dietary vinegar prevents kidney stone recurrence via epigenetic regulations. EBioMedicine 45:231–250. https://doi.org/10.1016/j.ebiom.2019.06.004 - DOI - PubMed - PMC
-
- Wigner P, Grębowski R, Bijak M, Szemraj J, Saluk-Bijak J (2021) The molecular aspect of nephrolithiasis development. Cells 10(8):1926–1943. https://doi.org/10.3390/cells10081926 - DOI - PubMed - PMC
-
- Yu Z, Yue W, Jiuzhi L, Youtao J, Guofei Z, Wenbin G (2018) The risk of bladder cancer in patients with urinary calculi: a meta-analysis. Urolithiasis 46(6):573–579. https://doi.org/10.1007/s00240-017-1033-7 - DOI - PubMed
LinkOut - more resources
Full Text Sources