Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 20;15(1):20092.
doi: 10.1038/s41598-025-07140-0.

Quadratic mixed convection of Maxwell-Buongiorno nanofluid over cubic stratified surface incorporating cross diffusion effects and solar radiation

Affiliations

Quadratic mixed convection of Maxwell-Buongiorno nanofluid over cubic stratified surface incorporating cross diffusion effects and solar radiation

Abbas Khan et al. Sci Rep. .

Abstract

Cubic stratification dramatically enhances thermal and mass transport in quadratic mixed convection, which is advantageous for electronics cooling, biomedical technology, and power plants. Nanofluids are essential to the development of next-generation cooling and environmental management solutions because of their exceptional thermal characteristics. Motivated by such impactful applications in thermal and engineering systems, this work uses the Buongiorno model to examine heat and mass transfer in Maxwell nanofluids over a vertically extended permeable surface under Darcy-Forchheimer porous flow situations. For a more accurate depiction, convective boundary conditions and suction-injection effects are also included in the current analysis. In order to represent complete heat and mass transport behavior, the model also takes into consideration radiative heat flux, viscous heating, chemical reaction, and cross-diffusion effects through the Soret and Dufour mechanisms. Similarity transformations are used to convert the controlling partial differential equations into a system of ordinary differential equations, which are then numerically solved using Mathematica's NDSolve approach. The influence of important physical parameters on thermal profiles, fluid velocity fields, and concentration distribution is demonstrated in detail through a visual analysis. The skin friction coefficient and local Nusselt and Sherwood numbers are calculated and studied in detail to determine the rates of heat, mass, and surface drag. Important key findings shows that the Velocity filed upsurges with nonlinear thermal and convection parameters, whereas it declines with higher Darcy and Forchheimer resistance effects. Moreover, nanofluid temperature is increased by Dufour and Eckert numbers and decreased by thermal stratification parameter. Finally, Soret and solutal Biot numbers enhance nanoparticle concentration, whereas solutal stratification parameter diminishes it. The results exhibit outstanding consistency with previous research published in the literature.

Keywords: Convective boundary conditions; Cross diffusion phenomena; Cubic stratification; Maxwell nanofluid; Nonlinear convection; Solar radiation.

PubMed Disclaimer

Conflict of interest statement

Declarations. Competing interests: The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Physical model of problem.
Fig. 2
Fig. 2
Velocity outline for distinct values of Deborah numbers formula image.
Fig. 3
Fig. 3
Velocity outline for distinct values of nonlinear thermal convective variable formula image.
Fig. 4
Fig. 4
Velocity outline for distinct values of nonlinear solutal convective variable formula image.
Fig. 5
Fig. 5
Velocity outline for distinct values of thermal convective variable formula image.
Fig. 6
Fig. 6
Velocity outline for distinct values of solutal convective variable formula image.
Fig. 7
Fig. 7
Velocity outline for distinct values of Darcy numbers formula image.
Fig. 8
Fig. 8
Velocity outline for distinct values of non Darcy variable formula image.
Fig. 9
Fig. 9
Velocity outline for distinct values of suction injection parameter formula image.
Fig. 10
Fig. 10
Temperature outline for distinct values of Deborah numbers formula image.
Fig. 11
Fig. 11
Temperature outline for distinct values of radiation parameter formula image.
Fig. 12
Fig. 12
Temperature outline for distinct values of Prandtl number formula image.
Fig. 13
Fig. 13
Temperature outline for distinct values of Dufour number formula image.
Fig. 14
Fig. 14
Temperature outline for distinct values of Brownian motion parameter formula image.
Fig. 15
Fig. 15
Temperature outline for distinct values of thermophoresis parameter formula image.
Fig. 16
Fig. 16
Temperature outline for distinct values of thermal stratification parameter formula image.
Fig. 17
Fig. 17
Temperature outline for distinct values of Eckert numbers formula image.
Fig. 18
Fig. 18
Temperature outline for distinct values of heat generation parameter formula image.
Fig. 19
Fig. 19
Temperature outline for distinct values of thermal Biot numbers formula image.
Fig. 20
Fig. 20
Concentration outline for distinct values of Lewis numbers formula image.
Fig. 21
Fig. 21
Concentration outline for distinct values of Soret parameter formula image.
Fig. 22
Fig. 22
Concentration outline for distinct values of Brownian motion parameter formula image.
Fig. 23
Fig. 23
Concentration outline for distinct values of thermophoresis parameter formula image.
Fig. 24
Fig. 24
Concentration outline for distinct values of Solutal stratification parameter formula image.
Fig. 25
Fig. 25
Concentration outline for distinct values of chemical reaction parameter formula image.
Fig. 26
Fig. 26
Concentration outline for distinct values of Solutal Biot parameter formula image.

Similar articles

References

    1. Choi, S. U. S. Nanofluid Technology: Current Status and Future Research (Argonne National Lab.(ANL), 1998). Argonne, IL (United States).
    1. Buongiorno, J. Convective transport in nanofluids (2006).
    1. Reza-E-Rabbi, S., Ahmmed, S. F., Arifuzzaman, S., Sarkar, T. & Khan, M. S. Computational modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles. Eng. Sci. Technol. Int. J.23 (3), 605–617 (2020).
    1. Reza-E-Rabbi, S., Arifuzzaman, S., Sarkar, T., Khan, M. S. & Ahmmed, S. F. Explicit finite difference analysis of an unsteady MHD flow of a chemically reacting Casson fluid past a stretching sheet with brownian motion and thermophoresis effects. J. King Saud Univ. -Sci. 32 (1), 690–701 (2020).
    1. Ratha, P. K., Mishra, S., Tripathy, R. & Pattnaik, P. K. Analytical approach on the free convection of Buongiorno model nanofluid over a shrinking surface, Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst.. 237(3–4), 83–95 (2023).

LinkOut - more resources