Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jan-Feb;59(1):60-79.

[Autophagy Impairment in Parkinson's Disease: Approaches to Therapy]

[Article in Russian]
Affiliations
  • PMID: 40542632
Review

[Autophagy Impairment in Parkinson's Disease: Approaches to Therapy]

[Article in Russian]
T S Usenko. Mol Biol (Mosk). 2025 Jan-Feb.

Abstract

Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by progressive motor impairment due to the death of dopaminergic neurons in the substantia nigra (SN) of the brain. PD affects more than 1% of the population over 60 years of age worldwide. Despite significant progress in understanding the pathogenesis of PD, including genetic and biochemical aspects, current therapy is limited to symptomatic treatments. Recent evidence suggests that impaired autophagy leads to the accumulation of abnormal proteins and, particularly, α-synuclein, aggregated forms of which are neurotoxic to dopaminergic neurons in the SN. Notably, PD is predominantly sporadic. However, monogenic PD forms have also been described. PD forms associated with mutations of the GBA1 or LRRK2 gene are among the most common PD forms with known etiology. Leucine-rich repeat kinase 2 (LRRK2), which is encoded by LRRK2, and the lysosomal enzyme glucocerebrosidase (GCase), which is encoded by GBA1, are involved in the same endolysosomal pathway. LRRK2 and GCase dysfunction reported in PD, especially in cases with mutations of the respective genes, can impair the endolysosomal pathway, the lysosomal function, and possibly autophagy. The review highlights the molecular mechanisms of autophagy and the prospects for targeted therapy of PD via induction of autophagy by influencing the key players in the process.

Keywords: GBA1; LRRK2; Parkinson's disease; autophagy; inducers; mTOR; targeted therapy.

PubMed Disclaimer

Similar articles

MeSH terms

Substances

LinkOut - more resources