Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug:202:193-204.
doi: 10.1016/j.actbio.2025.06.036. Epub 2025 Jun 20.

Spatiotemporal self-reinforcing hydrogel spray with antibacterial and anti-inflammatory properties for accelerated diabetic wound healing

Affiliations

Spatiotemporal self-reinforcing hydrogel spray with antibacterial and anti-inflammatory properties for accelerated diabetic wound healing

Shihua Mao et al. Acta Biomater. 2025 Aug.

Abstract

Sprayable hydrogels present an effective strategy for treating diabetic wounds, offering ease of application and good conformity to irregularly shaped wound sites. Nonetheless, their practical use remains significantly restricted by insufficient mechanical robustness and limited multifunctionality. Therefore, developing an approach to design sprayable hydrogel that simultaneously enhances mechanical strength, broadens functional capabilities, and ensures optimal wound adaptability is critically needed. In this work, an innovative approach integrating spatiotemporal self-strengthening and sprayability is proposed for the development of hydrogel-based wound dressings. This functionality is achieved through the synergy of rapid amidation and a gradual ring-opening reaction, equipping the hydrogels with both good wound adaptability and superior mechanical stability. The incorporation of polydopamine nanoparticles (PDA NPs) enables the creation of multifunctional therapeutic hydrogels specifically designed for chronic diabetic wound treatment. The hydrogel can be effortlessly sprayed onto wounds, progressively enhance their mechanical properties, and exhibit a combination of potent antibacterial activity, efficient reactive oxygen species (ROS) scavenging, strong bioadhesion, and outstanding biocompatibility, ultimately accelerating the diabetic wound healing process. We believe that sprayable hydrogels with these advanced properties will provide valuable insights into hydrogel-based wound dressings and expand the biomedical applications of bioinspired hydrogels. STATEMENT OF SIGNIFICANCE: Sprayable hydrogels present an effective strategy for treating diabetic wounds, offering ease of application and good conformity to irregularly shaped wound sites. Nonetheless, their practical use remains significantly restricted by insufficient mechanical robustness and limited multifunctionality. Herein, an approach integrating spatiotemporal self-strengthening and sprayability is proposed for the development of hydrogel-based wound dressings. Furthermore, we have developed sprayable hydrogel dressings with spatiotemporal self-strengthening, antibacterial and anti-inflammatory properties, consisting of double-network hydrogel and polydopamine nanoparticles (PDA NPs) as a multitargeted therapeutic system for chronic diabetic wound healing. We believe that this sprayable hydrogels will provide valuable insights into hydrogel-based wound dressings and expand the biomedical applications.

Keywords: Antibacterial; Diabetic wounds; Double-network hydrogel; Self-strengthen; Sprayable.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

MeSH terms

LinkOut - more resources