Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Jul 15;182(1):133-47.
doi: 10.1042/bj1820133.

The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase

The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase

M Lorusso et al. Biochem J. .

Abstract

In rat liver mitochondria treated with rotenone, N-ethylmaleimide or oligomycin the expected alkalinization caused by proton consumption for aerobic oxidation of ferrocyanide was delayed with respect to ferrocyanide oxidation, unless carbonyl cyanide p-trifluoromethoxyphenylhydrazone was present. 2. When valinomycin or valinomycin plus antimycin were also present, ferricyanide, produced by oxidation of ferrocyanide, was re-reduced by hydrogenated endogenous reductants. Under these circumstances the expected net proton consumption caused by ferrocyanide oxidation was preceded by transient acidification. It is shown that re-reduction of formed ferricyanide and proton release derive from rotenone- and antimycin-resistant oxidation of endogenous reductants through the proton-translocating segments of the respiratory chain on the substrate side of cytochrome c. The number of protons released per electron flowing to ferricyanide varied, depending on the experimental conditions, from 3.6 to 1.5. 3. The antimycin-insensitive re-reduction of ferricyanide and proton release from mitochondria were strongly depressed by 2-n-heptyl-4-hydroxyquinoline N-oxide. This shows that the ferricyanide formed accepts electrons passing through the protonmotive segments of the respiratory chain at the level of cytochrome c and/or redox components of the cytochrome b-c1 complex situated on the oxygen side of the antimycin-inhibition site. Dibromothymoquinone depressed and duroquinol enhanced, in the presence of antimycin, the proton-release process induced by ferrocyanide respiration. Both quinones enhanced the rate of scalar proton production associated with ferrocyanide respiration, but lowered the number of protons released per electron flowing to the ferricyanide formed. 4. Net proton consumption caused by aerobic oxidation of exogenous ferrocytochrome c by antimycin-supplemented bovine heart mitochondria was preceded by scalar proton release, which was included in the stoicheiometry of 1 proton consumed per mol of ferrocytochrome c oxidized. This scalar proton production was associated with transition of cytochrome c from the reduced to the oxidized form and not to electron flow along cytochrome c oxidase. 5. It is concluded that cytochrome c oxidase only mediates vectorial electron flow from cytochrome c at the outer side to protons that enter the oxidase from the matrix side of the membrane. In addition to this consumption of protons the oxidase does not mediate vectorial proton translocation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochim Biophys Acta. 1978 Oct 11;504(1):200-14 - PubMed
    1. Mol Cell Biochem. 1977 Sep 9;17(2):101-12 - PubMed
    1. Biochem J. 1973 Mar;132(3):571-85 - PubMed
    1. Biochemistry. 1972 Mar 28;11(7):1150-4 - PubMed
    1. J Biol Chem. 1972 Jun 25;247(12):4074-9 - PubMed

MeSH terms