Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 16;45(29):e1619242025.
doi: 10.1523/JNEUROSCI.1619-24.2025.

HDAC3 Serine 424 Phospho-mimic and Phospho-null Mutants Bidirectionally Modulate Long-Term Memory Formation and Synaptic Plasticity in the Adult and Aging Mouse Brain

Affiliations

HDAC3 Serine 424 Phospho-mimic and Phospho-null Mutants Bidirectionally Modulate Long-Term Memory Formation and Synaptic Plasticity in the Adult and Aging Mouse Brain

Alyssa C Rodriguez et al. J Neurosci. .

Abstract

Long-term memory (LTM) formation is negatively regulated by histone deacetylase 3 (HDAC3), a transcriptional repressor. Emerging evidence suggests that posttranslational phosphorylation of HDAC3 at its serine 424 (S424) residue is critical for its deacetylase activity in transcription. However, it remains unknown if HDAC3 S424 phosphorylation regulates the ability of HDAC3 to modulate LTM formation. To examine the functionality of S424, we expressed an HDAC3-S424D phospho-mimic mutant (constitutively active form) or an HDAC3-S424A phospho-null mutant (phospho-dead form) in the dorsal hippocampus of mice. We assessed the functional consequence of these mutants on LTM formation and long-term potentiation (LTP) in young adult male mice. We also assessed whether the HDAC3-S424A mutant could ameliorate age-related deficits in LTM and LTP in aging male and female mice. Results demonstrate that young adult male mice expressing the HDAC3-S424D phospho-mimic mutant in the dorsal hippocampus exhibit significantly impaired LTM and LTP. In contrast, the HDAC3-S424A phospho-null mutant expressed in the hippocampus of young adult male mice enabled the transformation of subthreshold learning into robust LTM and enhanced LTP. Similarly, expression of the HDAC3-S424A mutant enabled LTM formation and enhanced LTP in aging male and aging female mice. Overall, these findings demonstrate that HDAC3 S424 is a pivotal residue that has the ability to bidirectionally regulate synaptic plasticity and LTM formation in the adult and aging brain.

Keywords: HDAC3; aging; epigenetics; memory; phosphorylation; synaptic plasticity.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interests.

References

    1. Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145. 10.1152/physrev.00017.2008 - DOI - PMC - PubMed
    1. Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Int J Mol Med 40:271–280. 10.3892/ijmm.2017.3036 - DOI - PMC - PubMed
    1. Bahl S, Seto E (2021) Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell Mol Life Sci 78:427–445. 10.1007/s00018-020-03599-4 - DOI - PMC - PubMed
    1. Bardai FH, D'Mello SR (2011) Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci 31:1746–1751. 10.1523/JNEUROSCI.5704-10.2011 - DOI - PMC - PubMed
    1. Barrett RM, Malvaez M, Kramar E, Matheos DP, Arrizon A, Cabrera SM, Lynch G, Greene RW, Wood MA (2011) Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36:1545–1556. 10.1038/npp.2011.61 - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources