A Two-Component Pseudo-Icosahedral Protein Nanocompartment with Variable Shell Composition and Irregular Tiling
- PMID: 40557621
- DOI: 10.1002/advs.202503617
A Two-Component Pseudo-Icosahedral Protein Nanocompartment with Variable Shell Composition and Irregular Tiling
Abstract
Protein shells or capsids are a widespread form of compartmentalization in nature. Viruses use protein capsids to protect and transport their genomes while many cellular organisms use protein shells for varied metabolic purposes. These protein-based compartments often exhibit icosahedral symmetry and consist of a small number of structural components with defined roles. Encapsulins are a prevalent protein-based compartmentalization strategy in prokaryotes. All encapsulins studied thus far consist of a single shell protein that adopts the viral Hong Kong 97 (HK97)-fold. Here, the characterization of a Family 2B two-component encapsulin from Streptomyces lydicus is reported. The differential assembly behavior of the two shell components and their ability to co-assemble into mixed shells with variable shell composition is demonstrated. The structures of both shell proteins are determined using cryo-electron microscopy. Using 3D-classification and cross-linking studies, the irregular tiling of mixed shells is highlighted. This work expands the known assembly modes of HK97-fold proteins and lays the foundation for future functional and engineering studies on two-component encapsulins.
Keywords: capsid; encapsulin; icosahedral; self‐assembly; two‐component.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Update of
-
A two-component quasi-icosahedral protein nanocompartment with variable shell composition and irregular tiling.bioRxiv [Preprint]. 2024 Apr 26:2024.04.25.591138. doi: 10.1101/2024.04.25.591138. bioRxiv. 2024. Update in: Adv Sci (Weinh). 2025 Aug;12(32):e03617. doi: 10.1002/advs.202503617. PMID: 38712103 Free PMC article. Updated. Preprint.
Similar articles
-
A two-component quasi-icosahedral protein nanocompartment with variable shell composition and irregular tiling.bioRxiv [Preprint]. 2024 Apr 26:2024.04.25.591138. doi: 10.1101/2024.04.25.591138. bioRxiv. 2024. Update in: Adv Sci (Weinh). 2025 Aug;12(32):e03617. doi: 10.1002/advs.202503617. PMID: 38712103 Free PMC article. Updated. Preprint.
-
Structure of a new capsid form and comparison with A-, B-, and C-capsids clarify herpesvirus assembly.J Virol. 2025 Jul 22;99(7):e0050425. doi: 10.1128/jvi.00504-25. Epub 2025 Jul 3. J Virol. 2025. PMID: 40607812 Free PMC article.
-
Charge Detection Mass Spectrometry Reveals Favored Structures in the Assembly of Virus-Like Particles: Polymorphism in Norovirus GI.1.Anal Chem. 2024 Aug 13;96(32):13150-13157. doi: 10.1021/acs.analchem.4c01913. Epub 2024 Jul 29. Anal Chem. 2024. PMID: 39074122
-
Structural Capsidomics of Single-Stranded DNA Viruses.Viruses. 2025 Feb 27;17(3):333. doi: 10.3390/v17030333. Viruses. 2025. PMID: 40143263 Free PMC article. Review.
-
The Structural Diversity of Encapsulin Protein Shells.Chembiochem. 2024 Dec 16;25(24):e202400535. doi: 10.1002/cbic.202400535. Epub 2024 Nov 4. Chembiochem. 2024. PMID: 39330624 Free PMC article. Review.
References
-
- Y. Liu, T. A. Demina, S. Roux, P. Aiewsakun, D. Kazlauskas, P. Simmonds, D. Prangishvili, H. M. Oksanen, M. Krupovic, PLoS Biol. 2021, 19, 3001442.
-
- W. R. Wikoff, L. Liljas, R. L. Duda, H. Tsuruta, R. W. Hendrix, J. E. Johnson, Science 2000, 289, 2129.
-
- M. K. Pietilä, P. Laurinmäki, D. A. Russell, C. Ko, D. Jacobs‐Sera, R. W. Hendrix, D. H. Bamford, S. J. Butcher, Proc. Natl. Acad. Sci. USA 2013, 110, 10604.
-
- M. L. Baker, W. Jiang, F. J. Rixon, W. Chiu, J. Virol. 2005, 79, 14967.
-
- T. W. Giessen, Annu. Rev. Biochem. 2022, 91, 353.