Short-Term Evolutionary Features and Circadian Clock-Modulated Gene Expression Analysis of Piezo, nanchung, and αTubulin at 67C in a Romanian Population of Drosophila suzukii
- PMID: 40559021
- PMCID: PMC12193370
- DOI: 10.3390/insects16060591
Short-Term Evolutionary Features and Circadian Clock-Modulated Gene Expression Analysis of Piezo, nanchung, and αTubulin at 67C in a Romanian Population of Drosophila suzukii
Abstract
Drosophila suzukii is a successful invasive insect species responsible for agricultural losses. The key to its prowess is the ability to swiftly adapt to new environments through various genetic mechanisms, including fast accommodation of mutations and gene expression fine-tuning. Piezo and nanchung (nan) genes are linked to circadian clock-related behaviors and, therefore, are expected to readily respond to stress stimuli. Herein, we compared the DNA sequences of Piezo, nan, and αTubulin at 67C, a highly conserved housekeeping gene, in ICDPP-ams-1, a Romanian local population of D. suzukii, and two well-annotated reference populations from the United States of America and Japan. Our results imply that short-term evolutionary accumulated single nucleotide and indel variants are overrepresented within introns, a propensity evaluated through the mutation accumulation tendency (MAT) original parameter. Piezo and nan gene expression under photoperiodicity changes challenges were assessed in a series of experiments on three groups of individuals from ICDPP-ams-1. We found that both genes are upregulated in females if their customary circadian rhythm is affected, a trend seemingly reverting if, after an initial perturbation, the circadian clock is reset to its initial timing. In conclusion, we found that both highly conserved and adaptability-related genes are rapidly evolving and that Piezo and nan have a fast functional reaction to circadian clock changes by modifying their gene expression profiles.
Keywords: Drosophila suzukii; adaptability; circadian clock; gene expression; short-term evolution.
Conflict of interest statement
The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
Figures
References
-
- Kanzawa T. Studies on Drosophila suzukii Mats. Rev. Appl. Entomol. 1939;29:622.
-
- Cini A., Ioriatti C., Anfora G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectology. 2012;65:149–160.
-
- Asplen M.K., Anfora G., Biondi A., Choi D.S., Chu D., Daane K.M., Gibert P., Gutierrez A.P., Hoelmer K.A., Hutchison W.D., et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 2015;88:469–494. doi: 10.1007/s10340-015-0681-z. - DOI
-
- Walsh D.B., Bolda M.P., Goodhue R.E., Dreves A.J., Lee J., Bruck D.J., Walton V.M., O’Neal S.D., Zalom F.G. Drosophila suzukii (Diptera: Drosophilidae): Invasive Pest of Ripening Soft Fruit Expanding its Geographic Range and Damage Potential. J. Integr. Pest Manag. 2011;2:G1–G7. doi: 10.1603/IPM10010. - DOI
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
