Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Dec;5(4):584-90.
doi: 10.1038/jcbfm.1985.87.

Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations

Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations

C S Patlak et al. J Cereb Blood Flow Metab. 1985 Dec.

Abstract

The method of graphical analysis for the evaluation of sequential data (e.g., tissue and blood concentrations over time) in which the test substance is irreversibly trapped in the system has been expanded. A simpler derivation of the original analysis is presented. General equations are derived that can be used to analyze tissue uptake data when the blood-plasma concentration of the test substance cannot be easily measured. In addition, general equations are derived for situations when trapping of the test substance is incomplete and for a combination of these two conditions. These derivations are independent of the actual configuration of the compartmental system being analyzed and show what information can be obtained for the period when the reversible compartments are in effective steady state with the blood. This approach is also shown to result in equations with at least one less nonlinear term than those derived from direct compartmental analysis. Specific applications of these equations are illustrated for a compartmental system with one reversible region (with or without reversible binding) and one irreversible region.

PubMed Disclaimer

LinkOut - more resources