Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Nov;76(5):2030-3.
doi: 10.1172/JCI112205.

The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles

The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles

C M Schron et al. J Clin Invest. 1985 Nov.

Abstract

In rabbit jejunal, but not ileal brush border membrane vesicles, an outwardly directed OH- gradient (pH 7.7 inside, pH 5.5 outside) markedly stimulated the initial velocity of folate (0.1 microM) uptake compared with uptake in the absence of a pH gradient. Under pH gradient conditions, folate was transiently accumulated at a concentration four times that found at equilibrium (over-shoot), implying uphill transport of the vitamin. Equilibrium folate uptake was inversely proportional to medium osmolality, suggesting uptake into an osmotically sensitive space. pH gradient-stimulated folate uptake was markedly reduced by inhibitors of anion exchange (4,4'-diisothiocyano-2,2'-disulfonic acid stilbene; 4-acetamido-4-isothiocyanostilbene-2,2'-disulfonic acid; furosemide), and was saturable (folate Km = 0.19 +/- 0.02 microM; Vmax = 12.8 +/- 0.4 pmol X mg protein-1 X min-1). Imposition of an inside-positive electrical potential did not stimulate folate uptake, suggesting that stimulation by a pH gradient was not due to an induced electrical potential. In contrast, an inwardly directed Na+ or K+ gradient did not stimulate folate uptake. These findings provide evidence for a carrier on the jejunal brush border membrane that mediates folate/OH- exchange (or H+/folate co-transport), and are consonant with the known presence of an outwardly directed OH- gradient in vivo (brush border acid microclimate), an acidic pH optimum for intestinal folate uptake, and the primary role of the jejunum in folate absorption.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Cell Biol. 1967 Feb;32(2):415-38 - PubMed
    1. Proc R Soc Lond B Biol Sci. 1978 Jan 24;200(1138):27-41 - PubMed
    1. J Lab Clin Med. 1979 May;93(5):790-9 - PubMed
    1. Methods Enzymol. 1979;63:103-38 - PubMed
    1. Am J Physiol. 1981 Feb;240(2):G170-5 - PubMed

Publication types