Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul;28(7):1393-1403.
doi: 10.1038/s41593-025-01998-z. Epub 2025 Jun 25.

Fine-mapping genomic loci refines bipolar disorder risk genes

Maria Koromina  1   2   3 Ashvin Ravi  4   5   6   7 Georgia Panagiotaropoulou  8 Brian M Schilder  4   6   7 Jack Humphrey  4   5   6   7 Alice Braun  8 Tim Bidgeli  9 Chris Chatzinakos  9 Brandon J Coombes  10 Jaeyoung Kim  11 Xiaoxi Liu  12   13 Chikashi Terao  12   13   14 Kevin S O'Connell  15   16 Mark J Adams  17 Rolf Adolfsson  18 Martin Alda  19   20 Lars Alfredsson  21 Till F M Andlauer  22 Ole A Andreassen  15   16 Anastasia Antoniou  23 Bernhard T Baune  24   25   26 Susanne Bengesser  27 Joanna Biernacka  10   28 Michael Boehnke  29 Rosa Bosch  30   31 Murray J Cairns  32 Vaughan J Carr  33 Miquel Casas  30   31 Stanley Catts  34 Sven Cichon  35   36   37   38 Aiden Corvin  39 Nicholas Craddock  40 Konstantinos Dafnas  23 Nina Dalkner  27 Udo Dannlowski  41 Franziska Degenhardt  36   42 Arianna Di Florio  40   43 Dimitris Dikeos  23 Frederike Tabea Fellendorf  27 Panagiotis Ferentinos  23   44 Andreas J Forstner  36   38   45 Liz Forty  40 Mark Frye  28 Janice M Fullerton  46   47 Micha Gawlik  48 Ian R Gizer  49 Katherine Gordon-Smith  50 Melissa J Green  46   51 Maria Grigoroiu-Serbanescu  52 José Guzman-Parra  53 Tim Hahn  41 Frans Henskens  32 Jan Hillert  54 Assen V Jablensky  55 Lisa Jones  50 Ian Jones  40 Lina Jonsson  56 John R Kelsoe  57 Tilo Kircher  58 George Kirov  40 Sarah Kittel-Schneider  48   59   60 Manolis Kogevinas  61 Mikael Landén  56   62 Marion Leboyer  63   64 Melanie Lenger  27 Jolanta Lissowska  65 Christine Lochner  66 Carmel Loughland  32 Donald J MacIntyre  17 Nicholas G Martin  67   68 Eirini Maratou  69 Carol A Mathews  70 Fermin Mayoral  53 Susan L McElroy  71 Nathaniel W McGregor  72 Andrew McIntosh  17 Andrew McQuillin  73 Patricia Michie  32 Philip B Mitchell  51 Paraskevi Moutsatsou  69 Bryan Mowry  34 Bertram Müller-Myhsok  74   75 Richard M Myers  76 Igor Nenadić  58   77 Caroline M Nievergelt  57 Markus M Nöthen  36 John Nurnberger  78   79   80 Michael O 'Donovan  40 Claire O 'Donovan  19 Roel A Ophoff  81   82   83 Michael J Owen  40 Christos Pantelis  84 Carlos Pato  85 Michele T Pato  85 George P Patrinos  86   87   88   89 Joanna M Pawlak  90 Roy H Perlis  91   92 Evgenia Porichi  23 Danielle Posthuma  93   94 Josep Antoni Ramos-Quiroga  30   95   96   97 Andreas Reif  59 Eva Z Reininghaus  27 Marta Ribasés  30   95   97   98 Marcella Rietschel  99 Ulrich Schall  32 Peter R Schofield  51 Thomas G Schulze  99   100   101   102   103 Laura Scott  29 Rodney J Scott  32 Alessandro Serretti  104   105 Jordan W Smoller  106   107   108 Beata Świątkowska  109 Maria Soler Artigas  30   95   96   97 Dan J Stein  110 Fabian Streit  99   111   112   113 Claudio Toma  46   51   114 Paul Tooney  32 Marquis P Vawter  115   116 Eduard Vieta  117 John B Vincent  118 Irwin D Waldman  119 Cynthia Shannon Weickert  51   120 Thomas Weickert  51   120 Stephanie H Witt  99 Kyung Sue Hong  121 Masashi Ikeda  122 Nakao Iwata  122 Hong-Hee Won  11   123 Howard J Edenberg  124   125 Stephan Ripke  8   126 Towfique Raj  4   6   7 Jonathan R I Coleman  44   127 Niamh Mullins  128   129   130
Affiliations

Fine-mapping genomic loci refines bipolar disorder risk genes

Maria Koromina et al. Nat Neurosci. 2025 Jul.

Abstract

Bipolar disorder is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 bipolar disorder risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci and prioritized 17 likely causal SNPs for bipolar disorder. We mapped these SNPs to genes and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci and results from rare variant exome sequencing in bipolar disorder. Convergent lines of evidence supported the roles of genes involved in neurotransmission and neurodevelopment, including SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, FKBP2, RASGRP1, FURIN, FES, MED24 and THRA among others in bipolar disorder. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance of bipolar disorder polygenic risk scores across diverse populations and present a high-throughput fine-mapping pipeline.

PubMed Disclaimer

Conflict of interest statement

Competing interests: O.A.A. has served as a speaker for Janssen, Lundbeck and Sunovion, and as a consultant for Cortechs.ai. S.K.S. has served as speaker for Janssen, Takeda and Medice Arzneimittel Puetter GmbH & CoKG. E.V. has received grants and served as consultant, advisor or CME speaker for the following entities (unrelated to the present work): AB-Biotics, Abbott, AbbVie, Adamed, Angelini, Biogen, Biohaven, Boehringer Ingelheim, Casen-Recordati, Celon, Compass, Dainippon Sumitomo Pharma, Ethypharm, Ferrer, Gedeon Richter, GH Research, Glaxo Smith-Kline, Idorsia, Janssen, Johnson & Johnson, Lundbeck, Newron, Novartis, Organon, Otsuka, Rovi, Sage, Sanofi-Aventis, Sunovion, Takeda and Viatris. P.B.M. has received remuneration from Janssen (Australia) and Sanofi (Hangzhou) for lectures, and Janssen (Australia) for advisory board membership. M.O.D. and M.J.O. have received grants from Akrivia Health and Takeda Pharmaceuticals for work unrelated to this project. The remaining authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Schematic workflow of the fine-mapping pipeline developed for PGC3 BD GWAS risk loci.
Conditional analyses were performed within GWS loci using GCTA-COJO, based on the LD structure of the Haplotype Reference Consortium (HRC) reference panel. Fine-mapping was conducted using statistical (SuSiE and FINEMAP) and functionally-informed (PolyFun) methods, according to the LD structure of the HRC, UK Biobank (UKB) and a subset of the GWAS data (‘in-sample LD’), as well as implementing single-variant (no LD) fine-mapping. PolyFun functional priors were based on the published baseline-LF2.2 UKB model. Fine-mapping results were validated computationally via VEP annotations and functional consequences, overlap with epigenomic peaks from brain cell types, SMR with brain expression, splicing and methylation QTL data, convergence with rare variant associations from the BipEx sequencing collaboration and testing whether fine-mapping effect sizes improve PRSs (PRS-CS and PolyPred). Asterisk indicates that the MHC was fine-mapped using separate procedures (see ‘Fine-mapping the MHC locus’ section). VEP, variant effect predictor.
Fig. 2
Fig. 2. Results and comparison of 16 fine-mapping analyses conducted.
The barplot displays the number of SNPs fine-mapped with PIP > 0.5 and part of a 95% credible set on the y axis and each fine-mapping analysis on the x axis. The black bordered bars indicate the number of SNPs fine-mapped with PIP > 0.95 and part of a 95% credible set. Each analysis is named according to (LD option)_(fine-mapping method). The heatmap displays the Jaccard index of concordance in results between each pair of fine-mapping analyses, calculated based on SNPs with PIP > 0.5 and part of a 95% credible set. Jaccard indices ranged from 0.25 to 1 (mean = 0.54, s.d. = 0.20), with higher values indicating more similar fine-mapping results.
Fig. 3
Fig. 3. Plot of union consensus SNPs across all 16 fine-mapping analyses, including different LD options and fine-mapping methods.
The color of the points corresponds to the LD option used—UKB (pink), HRC (blue), in-sample LD (purple) and no LD (single-variant fine-mapping; gray). Circles indicate statistical fine-mapping methods and squares indicate functional fine-mapping methods. Small shapes denote SNPs with PIP between 0.50 and 0.90, while large shapes denote SNPs with PIP above 0.95. On the x axis, analyses are named according to (LD option)_(fine-mapping method). On the y axis, the PGC3 locus name is displayed in parentheses after each fine-mapped SNP and indicates the name assigned to identify the locus in the original PGC3 BD GWAS publication, which is not necessarily the causal gene.
Fig. 4
Fig. 4. Summary of analyses performed to link each fine-mapped SNP to the relevant gene(s).
The y axis shows the 17 union consensus SNPs with the PGC3 locus name displayed in parentheses after each one, which indicates the name assigned to identify the locus in the original PGC3 BD GWAS publication and not necessarily the causal gene. On the x axis, the columns depict the results of eight analyses performed to link the fine-mapped SNPs to the relevant gene(s). The analysis method and the dataset used are labeled above and below the figure, respectively. Colored cells denote significant results and the relevant gene names are printed within each cell. For fine-mapped SNPs located in active enhancers, the relevant genes were obtained using data on PLAC-seq interactions with gene promoters. A colored cell includes no gene name when there was no known interaction between the enhancer and a promoter, or when the methylation probe was not annotated to any gene. Empty cells are those with nonsignificant results or where the SNP was not present in the dataset used.
Fig. 5
Fig. 5. Phenotypic variance in BD explained by standard PRS (PRS-CS) and fine-mapping-informed PRS (SuSiE + PRS-CS and PolyPred-P) in target cohorts of diverse genetic ancestries.
The x axis displays the target cohorts, grouped by genetic ancestry, and the PRS method used. The name of each cohort and the number of BD cases and controls are shown below each barplot. The y axis shows the percentage variance explained on the liability scale (assuming a 2% population prevalence of BD) with error bars indicating the 95% confidence interval around each R2 value. P values for the association of PRS with case versus control status are printed on top of each bar. Significant P values (P < 0.05) for the test of difference in variance explained by the fine-mapping informed PRS versus PRS-CS are provided above the horizontal lines, using the F test for nested models.

Update of

  • Fine-mapping genomic loci refines bipolar disorder risk genes.
    Koromina M, Ravi A, Panagiotaropoulou G, Schilder BM, Humphrey J, Braun A, Bidgeli T, Chatzinakos C, Coombes B, Kim J, Liu X, Terao C, O 'Connell KS, Adams M, Rolf A, Alda M, Alfredsson L, Andlauer TFM, Andreassen OA, Antoniou A, Baune BT, Bengesser S, Biernacka J, Boehnke M, Bosch R, Cairns MJ, Carr VJ, Casas M, Catts S, Cichon S, Corvin A, Craddock N, Dafnas K, Dalkner N, Dannlowski U, Degenhardt F, Florio AD, Dikeos D, Fellendorf FT, Ferentinos P, Forstner AJ, Forty L, Frye M, Fullerton JM, Gawlik M, Gizer IR, Gordon-Smith K, Green MJ, Grigoroiu-Serbanescu M, Guzman-Parra J, Hahn T, Henskens F, Hillert J, Jablensky AV, Jones L, Jones I, Jonsson L, Kelsoe JR, Kircher T, Kirov G, Kittel-Schneider S, Kogevinas M, Landén M, Leboyer M, Lenger M, Lissowska J, Lochner C, Loughland C, MacIntyre D, Martin NG, Maratou E, Mathews CA, Mayoral F, McElroy SL, McGregor NW, McIntosh A, McQuillin A, Michie P, Mitchell PB, Moutsatsou P, Mowry B, Müller-Myhsok B, Myers RM, Nenadić I, Nievergelt C, Nöthen MM, Nurnberger J, O 'Donovan M, O'Donovan C, Ophoff RA, Owen MJ, Pantelis C, Pato C, Pato MT, Patrinos GP, Pawlak JM, Perlis RH, Porichi E, Posthuma D, Ramos-Quiroga JA, Reif A, Reininghaus EZ, R… See abstract for full author list ➔ Koromina M, et al. medRxiv [Preprint]. 2024 Sep 17:2024.02.12.24302716. doi: 10.1101/2024.02.12.24302716. medRxiv. 2024. Update in: Nat Neurosci. 2025 Jul;28(7):1393-1403. doi: 10.1038/s41593-025-01998-z. PMID: 38405768 Free PMC article. Updated. Preprint.

Similar articles

Cited by

References

    1. O’Connell, K. S. & Coombes, B. J. Genetic contributions to bipolar disorder: current status and future directions. Psychol. Med.51, 2156–2167 (2021). - PMC - PubMed
    1. Craddock, N. & Sklar, P. Genetics of bipolar disorder. Lancet381, 1654–1662 (2013). - PubMed
    1. McGuffin, P. et al. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry60, 497–502 (2003). - PubMed
    1. Smoller, J. W. & Finn, C. T. Family, twin, and adoption studies of bipolar disorder. Am. J. Med. Genet. C Semin. Med. Genet.123C, 48–58 (2003). - PubMed
    1. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet.51, 793–803 (2019). - PMC - PubMed

MeSH terms