Palmitoylethanolamide: A Multifunctional Molecule for Neuroprotection, Chronic Pain, and Immune Modulation
- PMID: 40563990
- PMCID: PMC12189779
- DOI: 10.3390/biomedicines13061271
Palmitoylethanolamide: A Multifunctional Molecule for Neuroprotection, Chronic Pain, and Immune Modulation
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid mediator belonging to the N-acyl-ethanolamine family, widely recognized for its multifaceted effects on neuroprotection, chronic pain management, and immune modulation. As a naturally occurring compound, PEA plays a crucial role in maintaining homeostasis under conditions of cellular stress and inflammation. Its pharmacological effects are primarily mediated through peroxisome proliferator-activated receptor-alpha (PPAR-α) activation, alongside indirect modulation of cannabinoid receptors CB1 and CB2, as well as interactions with novel targets such as GPR55 and TRPV1. These molecular mechanisms underpin its broad therapeutic potential, particularly in the management of neuroinflammatory and neurodegenerative disorders, pain syndromes, and immune dysregulation. A major advancement in PEA research has been the development of ultramicronized palmitoylethanolamide (umPEA), which significantly enhances its bioavailability and therapeutic efficacy by facilitating better tissue absorption and interaction with key molecular pathways. Preclinical and clinical studies have demonstrated that umPEA is particularly effective in reducing neuroinflammation, stabilizing mast cells, and enhancing endocannabinoid system activity, making it a promising candidate for integrative approaches in neuropsychiatric and chronic inflammatory diseases. Given its well-established safety profile, umPEA represents an attractive alternative or adjunct to conventional anti-inflammatory and analgesic therapies. This communication provides a comprehensive overview of the mechanisms of action and therapeutic applications of both PEA and umPEA, emphasizing their emerging role in clinical practice and personalized medicine.
Keywords: chronic pain; endocannabinoid system; immune modulation; neuroprotection; palmitoylethanolamide.
Conflict of interest statement
The authors declare no conflicts of interest.
Similar articles
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2. Cochrane Database Syst Rev. 2017. Update in: Cochrane Database Syst Rev. 2020 Jan 9;1:CD011535. doi: 10.1002/14651858.CD011535.pub3. PMID: 29271481 Free PMC article. Updated.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.J Psychiatr Ment Health Nurs. 2024 Aug;31(4):681-698. doi: 10.1111/jpm.13023. Epub 2024 Jan 17. J Psychiatr Ment Health Nurs. 2024. PMID: 38230967
-
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948. Health Technol Assess. 2024. PMID: 39367772 Free PMC article.
-
Palmitoylethanolamide in the Treatment of Pain and Its Clinical Application Prospects.Drug Des Devel Ther. 2025 Aug 13;19:6897-6923. doi: 10.2147/DDDT.S540327. eCollection 2025. Drug Des Devel Ther. 2025. PMID: 40827226 Free PMC article. Review.
References
LinkOut - more resources
Full Text Sources
Research Materials