The Profile of Retinal Ganglion Cell Death and Cellular Senescence in Mice with Aging
- PMID: 40564900
- PMCID: PMC12192622
- DOI: 10.3390/ijms26125436
The Profile of Retinal Ganglion Cell Death and Cellular Senescence in Mice with Aging
Abstract
Older age is a risk factor for glaucoma, in which progressive retinal ganglion cell (RGC) loss leads to visual field defects and irreversible visual impairment and even blindness. We recently identified the involvement of cellular senescence in RGC cell death post-optic nerve injury. Here we further aimed to delineate the profile of RGC survival in mice with aging, a physiological process with increasing cellular senescence. The numbers of senescent cells in the ganglion cell layer (GCL) significantly and progressively increased starting at 8 months of age. Yet, significant reduction of ganglion cell complex layer thickness began in the 10-month-old mice, and significant reduction in the number of RGCs began in the 12-month-old mice as compared to the 2-month-old mice. Meanwhile, pyroptosis and ferroptosis markers as well as cellular senescence-related cell cycle arrest proteins p15Ink4b, p16Ink4a, p21Cip1, and p53 were significantly and progressively increased in GCL. In contrast, there were no significant changes in dendritic field, complexity, and branches with increasing ages. Comparing between the 2- and 16-month-old mouse retinas, the differentially expressed genes were involved in the pathways of neurodegeneration, innate immunity, and mitochondrial ATP synthesis. In summary, this study revealed the gradual increase in senescent cells as well as pyroptosis and ferroptosis with progressive RGC reduction in mice with aging. Cellular senescence and the related cell death pathways are potential targets for age-related RGC reduction.
Keywords: aging; cell death; cellular senescence; retinal ganglion cells.
Conflict of interest statement
The authors declare no potential conflicts of interest.
Figures







