Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jun 7;26(12):5486.
doi: 10.3390/ijms26125486.

Gut Microbiota-Targeted Therapeutics for Metabolic Disorders: Mechanistic Insights into the Synergy of Probiotic-Fermented Herbal Bioactives

Affiliations
Review

Gut Microbiota-Targeted Therapeutics for Metabolic Disorders: Mechanistic Insights into the Synergy of Probiotic-Fermented Herbal Bioactives

Yue Fan et al. Int J Mol Sci. .

Abstract

Gut microbiota dysbiosis is intricately linked to metabolic disorders such as obesity, type 2 diabetes mellitus (T2DM), hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD). Traditional Chinese medicine (TCM), particularly when combined with probiotic fermentation, offers a promising therapeutic strategy by modulating microbial balance and host metabolism. This narrative review synthesizes current research on probiotic-fermented herbal bioactives, focusing on their mechanisms in ameliorating metabolic diseases. Probiotic and bioactive compounds (e.g., berberine, polysaccharides) are highlighted for their roles in enhancing intestinal barrier function, regulating microbial metabolites like short-chain fatty acids (SCFAs), and reducing inflammation. Fermentation techniques improve the bioavailability of TCM components while reducing toxicity, as seen in fermented Salvia miltiorrhiza and Rhizoma Coptidis. Despite promising results, challenges include the complexity of microbiota-host interactions and variability in TCM standardization. Future directions emphasize integrating multi-omics technologies and personalized approaches to optimize probiotic-fermented TCM therapies. This review underscores the potential of combining traditional herbal wisdom with modern biotechnology to address metabolic disorders, which pose significant global health challenges, through a "gut microbiota-metabolism" axis. Emerging evidence highlights the critical role of gut microbiota dysbiosis in the pathogenesis of these conditions. TCM has shown promise in modulating gut microbiota to restore metabolic homeostasis. This review synthesizes current research on TCM-derived interventions, such as herbal compounds, probiotics, and fermentation techniques, that target gut microbiota to ameliorate metabolic disorders. We discuss mechanisms of action, including prebiotic effects, enhancement of intestinal barrier function, and regulation of microbial metabolites, while addressing the limitations and future directions of TCM-based therapies.

Keywords: fermentation; gut microbiota; metabolic diseases; probiotics; traditional Chinese medicine.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
This flowchart shows the selection process of the studies included in this review.
Figure 2
Figure 2
Probiotic-fermented TCM treats related metabolic diseases through the gut microbiota.

Similar articles

References

    1. Chew N.W.S., Ng C.H., Tan D.J.H., Kong G., Lin C., Chin Y.H., Lim W.H., Huang D.Q., Quek J., Fu C.E., et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023;35:414–428.E3. doi: 10.1016/j.cmet.2023.02.003. - DOI - PubMed
    1. Fan Y., Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021;19:55–71. doi: 10.1038/s41579-020-0433-9. - DOI - PubMed
    1. Valdes A.M., Walter J., Segal E., Spector T.D. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. doi: 10.1136/bmj.k2179. - DOI - PMC - PubMed
    1. de Vos W.M., Tilg H., Van Hul M., Cani P.D. Gut microbiome and health: Mechanistic insights. Gut. 2022;71:1020–1032. doi: 10.1136/gutjnl-2021-326789. - DOI - PMC - PubMed
    1. Sanna S., van Zuydam N.R., Mahajan A., Kurilshikov A., Vich Vila A., Võsa U., Mujagic Z., Masclee A.A.M., Jonkers D., Oosting M., et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 2019;51:600–605. doi: 10.1038/s41588-019-0350-x. - DOI - PMC - PubMed

MeSH terms

Substances

LinkOut - more resources