Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Oct;86(4):501-25.
doi: 10.1085/jgp.86.4.501.

Peeled mammalian skeletal muscle fibers. Possible stimulation of Ca2+ release via a transverse tubule-sarcoplasmic reticulum mechanism

Peeled mammalian skeletal muscle fibers. Possible stimulation of Ca2+ release via a transverse tubule-sarcoplasmic reticulum mechanism

S K Donaldson. J Gen Physiol. 1985 Oct.

Abstract

Single muscle fibers from rabbit soleus and adductor magnus and from semitendinosus muscles were peeled to remove the sarcolemma and then stimulated to release Ca2+ by (a) caffeine application or (b) ionic depolarization accomplished via substitution of choline chloride for potassium propionate at constant [K+] X [Cl-] in the bathing solution. Each stimulus, ionic or caffeine, elicited an isometric tension transient that appeared to be due to Ca2+ released from the sarcoplasmic reticulum (SR). The peak magnitude of the ionic (Cl- -induced) tension transient increased with increasing Cl- concentration. The application of ouabain to fibers after peeling had no effect on either type of tension transient. However, soaking the fibers in a ouabain solution before peeling blocked the Cl- -induced but not the caffeine-induced tension transient, which suggests that ouabain's site of action is extracellular, perhaps inside transverse tubules (TTs). Treating the peeled fibers with saponin, which should disrupt TTs to a greater extent than SR membrane, greatly reduced or eliminated the Cl- -induced tension transient without significantly altering the caffeine-induced tension transient. These results suggest that the Cl- -induced tension transient is elicited via stimulation of sealed, polarized TTs rather than via ionic depolarization of the SR.

PubMed Disclaimer

Similar articles

Cited by

Publication types