Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 6;15(12):10736-10745.
doi: 10.1021/acscatal.5c02173. eCollection 2025 Jun 20.

Nile Red-Based Covalent Organic Framework as a Photocatalyst for C-H Bond Functionalization

Affiliations

Nile Red-Based Covalent Organic Framework as a Photocatalyst for C-H Bond Functionalization

Marta Gordo-Lozano et al. ACS Catal. .

Abstract

The search for efficient photocatalysts based on covalent organic frameworks (COFs) is an area of increasing interest. However, the development of these heterogeneous photocatalysts is hindered by the symmetry restrictions of the linkers used to construct these materials. Herein, we report the straightforward synthesis of an imine-based 2D-COF, NR 0.17 -COF, which incorporates a Nile Red (NR) unit via postmodification with a NR-alkyne scaffold. This framework exhibits remarkable photocatalytic activity across various photoredox-catalyzed C-H functionalization reactions, demonstrating the ability to directly functionalize prevalent bonds in organic molecules under mild conditions and with low-energy light. The NR 0.17 -COF showcases notable versatility, effectively generating aryl, sulfur, and nitrogen radicals from different radical precursors while maintaining good functional group tolerance. Moreover, our heterogeneous photocatalyst outperforms traditional homogeneous systems by addressing critical challenges such as scalability and recyclability, allowing for a 10-fold increase in the reaction scale and enabling recovery and reuse up to six times. This advancement significantly enhances the potential of COF postsynthetic modification for practical applications in organic synthesis, which marks a substantial step forward in photocatalytic technology.

Keywords: COF; C−H functionalization; Nile Red; heterogeneous catalysis; photocatalysis.

PubMed Disclaimer

Figures

1
1. (a–c) Overview of This Work
2
2. Synthesis of NR-Alk
3
3. Synthesis of NR0.17-COF
1
1
(A) FTIR spectra of Azide 0.17 -COF (black), NR-Alk (blue), and NR 0.17 -COF (magenta). (B) PXRD patterns of Azide 0.17 -COF (black) and NR 0.17 -COF (magenta). The inset shows a magnification in the 5.4–30° range. (C) N2 sorption isotherms of Azide 0.17 -COF (black) and NR 0.17 -COF (magenta). Empty symbols represent the desorption branches. (D) Pore size distribution of Azide 0.17 -COF (black) and NR 0.17 -COF (magenta).
2
2
(A) SEM micrograph of NR 0.17 -COF. (B) TEM micrograph of NR 0.17 -COF. (C) UV–vis spectra of the compounds under study in a THF/H2O (7/3) mixture.
4
4. Substrate Scope of the Light-Mediated Arylation of Heteroarenes with Aryldiazonium Salts
5
5. (a–c) NR0.17-COF as a Photocatalyst in Other Light-Mediated C–H Functionalization Reactions
3
3
(A) Scaled-up standard reaction using NR 0.17 -COF. (B) Recyclability of NR 0.17 -COF in the standard reaction. (C) Comparison of FTIR spectra of NR 0.17 -COF before (red) and after (black) catalysis. (D) Comparison of PXRD patterns of NR 0.17 -COF before (black) and after (magenta) catalysis. (E) Kinetic profiles for the standard reaction with different catalysts. (F) “Light/dark” experiments for the standard reaction using NR 0.17 -COF.
4
4
Cyclic voltammograms recorded at modified glassy carbon with carbon black (black) and with NR 0.17 -COF/carbon black (red) and Azide 0.17 -COF/carbon black (blue) in a 0.1 M TBAP/acetonitrile solution in the absence of O2. Cyclic voltammograms were recorded at modified glassy carbon with carbon black in the presence of 1 mg/mL NR-Alk (green) in 0.1 M TBAP/acetonitrile solution in the absence of O2.
6
6. Plausible Mechanism for Light-Mediated Arylation of Heteroarenes with NR0.17-COF as a Catalyst

Similar articles

References

    1. Anastas, P. T. ; Warner, J. C. . Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
    2. Anastas P. T., Zimmerman J. B.. The Molecular Basis of Sustainability. Chem. 2016;1:10–12. doi: 10.1016/j.chempr.2016.06.016. - DOI
    3. Sheldon R. A.. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chem. Eng. 2018;6:32–48. doi: 10.1021/acssuschemeng.7b03505. - DOI
    4. Zuin V. G., Eilks I., Elschami M., Kümmerer K.. Education in Green Chemistry and in Sustainable Chemistry: Perspectives towards Sustainability. Green Chem. 2021;23:1594–1608. doi: 10.1039/D0GC03313H. - DOI
    1. Shaw M. H., Twilton J., MacMillan W. C.. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016;81:6898–6926. doi: 10.1021/acs.joc.6b01449. - DOI - PMC - PubMed
    2. Marzo L., Pagire S. K., Reiser O., König B.. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angew. Chem., Int. Ed. 2018;57:10034–10072. doi: 10.1002/anie.201709766. - DOI - PubMed
    3. Zhou Q.-Q., Zou Y.-Q., Lu L.-Q., Xiao W.-J.. Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways. Angew. Chem., Int. Ed. 2019;58:1586–1604. doi: 10.1002/anie.201803102. - DOI - PubMed
    4. McAtee R. C., McClain E. J., Stephenson C. R. J.. Illuminating Photoredox Catalysis. Trends Chem. 2019;1:111–125. doi: 10.1016/j.trechm.2019.01.008. - DOI - PMC - PubMed
    5. Crisenza G. E.M., Melchiorre P.. Chemistry Glows Green with Photoredox Catalysis. Nat. Commun. 2020;11:803. - PMC - PubMed
    6. Reischauer S., Pieber B.. Emerging Concepts in Photocatalytic Organic Synthesis. iScience. 2021;24:102209. doi: 10.1016/j.isci.2021.102209. - DOI - PMC - PubMed
    7. Chan A. Y., Perry I. B., Bissonnette N. B., Buksh B. F., Edwards G. A., Frye L. I., Garry O. L., Lavagnino M. N., Li B. X., Liang Y., Mao E., Millet A., Oakley J. V., Reed N. L., Sakai H. A., Seath C. P., MacMillan D. W. C.. Chem. Rev. 2022;122:1485–1542. doi: 10.1021/acs.chemrev.1c00383. - DOI - PubMed
    8. Dutta S., Erchinger J. E., Strieth-Kalthoff F., Kleinmans R., Glorius F.. Energy Transfer Photocatalysis: Exciting Modes of Reactivity. Chem. Soc. Rev. 2024;53:1068–1089. doi: 10.1039/D3CS00190C. - DOI - PubMed
    1. Lee J., Papatzimas J. W., Bromby A. D., Gorobets E., Derksen D. J.. Thiaporphyrin-Mediated Photocatalysis Using Red Light. RSC Adv. 2016;6:59269–59272. doi: 10.1039/C6RA11374E. - DOI
    2. Yerien D. E., Cooke M. V., García Vior M. C., Barata-Vallejo S., Postigo A.. Radical Fluoroalkylation Reactions of (Hetero)­arenes and Sulfides under Red Light Photocatalysis. Org. Biomol. Chem. 2019;17:3741–3746. doi: 10.1039/C9OB00486F. - DOI - PubMed
    3. Mei L., Veleta J. M., Gianetti T. L.. Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions. J. Am. Chem. Soc. 2020;142:12056–12061. doi: 10.1021/jacs.0c05507. - DOI - PubMed
    4. Ravetz B. D., Tay N. E. S., Joe C. L., Sezen-Edmonds M., Schmidt M. A., Tan Y., Janey J. M., Eastgate M. D., Rovis T.. Development of a Platform for Near-Infrared Photoredox Catalysis. ACS Cent. Sci. 2020;6:2053–2059. doi: 10.1021/acscentsci.0c00948. - DOI - PMC - PubMed
    5. Glaser F., Wenger O. S.. Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. JACS Au. 2022;2:1488–1503. doi: 10.1021/jacsau.2c00265. - DOI - PMC - PubMed
    1. Photochemistry and Photophysics of Coordination Compounds I. In Topics in Current Chemistry; Balzani, V. ; Campagna, S. , Eds.; Vol. 280; Springer Berlin, 2007.
    2. Photochemistry and Photophysics of Coordination Compounds II. In Topics in Current Chemistry; Balzani, V. ; Campagna, S. , Eds.; Vol. 281; Springer Berlin, 2007.
    3. Fagnoni M., Dondi D., Ravelli D., Albini A.. Photocatalysis for the Formation of the C–C Bond. Chem. Rev. 2007;107:2725–2756. doi: 10.1021/cr068352x. - DOI - PubMed
    4. Prier C. K., Rankic D. A., MacMillan D. W. C.. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013;113:5322–5366. doi: 10.1021/cr300503r. - DOI - PMC - PubMed
    5. Teegardin K., Day J. I., Chan J., Weaver J.. Advances in Photocatalysis: A Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic Transformations. Org. Process Res. Dev. 2016;20:1156–1163. doi: 10.1021/acs.oprd.6b00101. - DOI - PMC - PubMed
    6. Romero N. A., Nicewicz D. A.. Organic Photoredox Catalysis. Chem. Rev. 2016;116:10075–10166. doi: 10.1021/acs.chemrev.6b00057. - DOI - PubMed
    7. Amos S G. E., Garreau M., Buzzetti L., Waser J.. Photocatalysis with Organic Dyes: Facile Access to Reactive Intermediates for Synthesis. Beilstein J. Org. Chem. 2020;16:1163–1187. doi: 10.3762/bjoc.16.103. - DOI - PMC - PubMed
    8. Vega-Peñaloza A., Mateos J., Companyó X., Escudero-Casao M., Dell’Amico L.. A Rational Approach to Organo-Photocatalysis: Novel Designs and Structure-Property Relationships. Angew. Chem., Int. Ed. 2021;60:1082–1097. doi: 10.1002/anie.202006416. - DOI - PubMed
    9. Filippini G., Dosso J., Prato M.. Phenols as Novel Photocatalytic Platforms for Organic Synthesis. Helv. Chim. Acta. 2023;106:e202300059
    10. Gentile G., Bartolomei B., Dosso J., Demitri N., Filippini G., Prato M.. Synthesis of a Novel Tetra-Phenol π-Extended Phenazine and its Application as an Organo-Photocatalyst. Chem. Commun. 2024;60:602–605. doi: 10.1039/D3CC05176E. - DOI - PubMed
    1. Zondag S. D. A., Mazzarella D., Noël T.. Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production. Annu. Rev. Chem. Biomol. Eng. 2023;14:283–300. doi: 10.1146/annurev-chembioeng-101121-074313. - DOI - PubMed

LinkOut - more resources