Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers
- PMID: 40573663
- PMCID: PMC12196715
- DOI: 10.3390/s25123777
Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers
Abstract
Plastic waste and pollution is growing rapidly worldwide and most plastics end up in landfill or are incinerated because high-quality recycling is not possible. Plastic-type identification with a low-cost, handheld spectral approach could help in parts of the world where high-end spectral imaging systems on conveyor belts cannot be implemented. Here, we investigate how two fundamentally different handheld infrared spectral devices can identify plastic types by benchmarking the same analysis against a high-resolution bench-top spectral approach. We used the handheld Plastic Scanner, which measures a discrete infrared spectrum using LED illumination at different wavelengths, and the SpectraPod, which has an integrated photonics chip which has varying responsivity in different channels in the near-infrared. We employ machine learning using SVM, XGBoost, Random Forest and Gaussian Naïve Bayes models on a full dataset of plastic samples of PET, HDPE, PVC, LDPE, PP and PS, with samples of varying shape, color and opacity, as measured with three different experimental approaches. The high-resolution spectral approach can obtain an accuracy (mean ± standard deviation) of (0.97 ± 0.01), whereas we obtain (0.93 ± 0.01) for the SpectraPod and (0.70 ± 0.03) for the Plastic Scanner. Differences of reflectance at subsequent wavelengths prove to be the most important features in the plastic-type classification model when using high-resolution spectroscopy, which is not possible with the other two devices. Lower accuracy for the handheld devices is caused by their limitations, as the spectral range of both devices is limited-up to 1600 nm for the SpectraPod, while the Plastic Scanner has limited sensitivity to reflectance at wavelengths of 1100 and 1350 nm, where certain plastic types show characteristic absorbance bands. We suggest that combining selective sensitivity channels (as in the SpectraPod) and illuminating the sample with varying LEDs (as with the Plastic Scanner) could increase the accuracy in plastic-type identification with a handheld device.
Keywords: benchmarking; handheld; machine learning; plastic identification; spectroscopy.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures




Similar articles
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2. Cochrane Database Syst Rev. 2018. PMID: 29357120 Free PMC article.
-
Immunogenicity and seroefficacy of pneumococcal conjugate vaccines: a systematic review and network meta-analysis.Health Technol Assess. 2024 Jul;28(34):1-109. doi: 10.3310/YWHA3079. Health Technol Assess. 2024. PMID: 39046101 Free PMC article.
-
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3. Cochrane Database Syst Rev. 2022. PMID: 35866452 Free PMC article.
-
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.Cochrane Database Syst Rev. 2023 May 31;5(5):CD014513. doi: 10.1002/14651858.CD014513. Cochrane Database Syst Rev. 2023. PMID: 37254718 Free PMC article.
References
-
- Napper I., Thompson R. Plastics and the Environment. Annu. Rev. Environ. Resour. 2023;48:55–79. doi: 10.1146/annurev-environ-112522-072642. - DOI
-
- Salahuddin U., Sun J., Zhu C., Wu M., Zhao B., Gao P.X. Plastic recycling: A review on life cycle, methods, misconceptions, and techno-economic analysis. Adv. Sustain. Syst. 2023;7:2200471. doi: 10.1002/adsu.202200471. - DOI
-
- Mehrubeoglu M., Van Sickle A., Turner J. Detection and identification of plastics using SWIR hyperspectral imaging; Proceedings of the SPIE: Imaging Spectrometry XXIV: Applications, Sensors, and Processing; Online. 24 August–4 September 2020; pp. 85–95.
LinkOut - more resources
Full Text Sources
Miscellaneous