An important step toward automation of polysomnography analyses
- PMID: 40577794
- PMCID: PMC12351252
- DOI: 10.1093/sleep/zsaf147
An important step toward automation of polysomnography analyses
Comment on
-
CAISR: achieving human-level performance in automated sleep analysis across all clinical sleep metrics.Sleep. 2025 Aug 14;48(8):zsaf134. doi: 10.1093/sleep/zsaf134. Sleep. 2025. PMID: 40554678 Free PMC article.
Similar articles
-
Automation of Anti-Drug Antibody Enrichment Using Streptavidin PhyTip® Columns for Sample Pretreatment in an Immunogenicity Assay.AAPS J. 2025 Jun 6;27(4):108. doi: 10.1208/s12248-025-01092-z. AAPS J. 2025. PMID: 40481247
-
Automation to facilitate optimisation of breast radiotherapy treatments using EPID-basedin vivodosimetry.Phys Med Biol. 2024 Apr 24;69(9). doi: 10.1088/1361-6560/ad387e. Phys Med Biol. 2024. PMID: 38537296
-
Toxic effects of nanomaterials for health applications: How automation can support a systematic review of the literature?J Appl Toxicol. 2022 Jan;42(1):41-51. doi: 10.1002/jat.4204. Epub 2021 May 29. J Appl Toxicol. 2022. PMID: 34050552 Free PMC article.
-
Clinical utility of limited channel sleep studies versus polysomnography for obstructive sleep apnoea.Cochrane Database Syst Rev. 2025 May 6;5(5):CD013810. doi: 10.1002/14651858.CD013810.pub2. Cochrane Database Syst Rev. 2025. PMID: 40326548 Review.
-
Attitudes Toward the Use of Conditional Automated Vehicles in the Technology Acceptance Model Framework: Evidence from an Italian Sample.Cyberpsychol Behav Soc Netw. 2025 Jul;28(7):469-477. doi: 10.1089/cyber.2024.0517. Epub 2025 May 12. Cyberpsychol Behav Soc Netw. 2025. PMID: 40351152
References
-
- Cesari M, Stefani A, Penzel T, et al. Interrater sleep stage scoring reliability between manual scoring from two European sleep centers and automatic scoring performed by the artificial intelligence-based Stanford-STAGES algorithm. J Clin Sleep Med. 2021;17(6):1237–1247. doi: https://doi.org/ 10.5664/jcsm.9174 - DOI - PMC - PubMed
-
- Itil TM, Shapiro DM, Fink M, Kassebaum D. Digital computer classifications of EEG sleep stages. Electroencephalogr Clin Neurophysiol. 1969;27(1):76–83. doi: https://doi.org/ 10.1016/0013-4694(69)90112-6 - DOI - PubMed
-
- Bandyopadhyay A, Oks M, Sun H, et al. Strengths, weaknesses, opportunities, and threats of using AI-enabled technology in sleep medicine: a commentary. J Clin Sleep Med. 2024;20(7):1183–1191. doi: https://doi.org/ 10.5664/jcsm.11132 - DOI - PMC - PubMed
-
- Hermans LWA, Huijben IAM, van Gorp H, et al. Representations of temporal sleep dynamics: Review and synthesis of the literature. Sleep Med Rev. 2022;63:101611. doi: https://doi.org/ 10.1016/j.smrv.2022.101611 - DOI - PubMed
-
- Fiorillo L, Puiatti A, Papandrea M, et al. Automated sleep scoring: a review of the latest approaches. Sleep Med Rev. 2019;48:101204. doi: https://doi.org/ 10.1016/j.smrv.2019.07.007 - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources