An important step toward automation of polysomnography analyses
- PMID: 40577794
- PMCID: PMC12351252
- DOI: 10.1093/sleep/zsaf147
An important step toward automation of polysomnography analyses
Comment on
-
CAISR: achieving human-level performance in automated sleep analysis across all clinical sleep metrics.Sleep. 2025 Aug 14;48(8):zsaf134. doi: 10.1093/sleep/zsaf134. Sleep. 2025. PMID: 40554678 Free PMC article.
References
-
- Cesari M, Stefani A, Penzel T, et al. Interrater sleep stage scoring reliability between manual scoring from two European sleep centers and automatic scoring performed by the artificial intelligence-based Stanford-STAGES algorithm. J Clin Sleep Med. 2021;17(6):1237–1247. doi: https://doi.org/ 10.5664/jcsm.9174 - DOI - PMC - PubMed
-
- Itil TM, Shapiro DM, Fink M, Kassebaum D. Digital computer classifications of EEG sleep stages. Electroencephalogr Clin Neurophysiol. 1969;27(1):76–83. doi: https://doi.org/ 10.1016/0013-4694(69)90112-6 - DOI - PubMed
-
- Bandyopadhyay A, Oks M, Sun H, et al. Strengths, weaknesses, opportunities, and threats of using AI-enabled technology in sleep medicine: a commentary. J Clin Sleep Med. 2024;20(7):1183–1191. doi: https://doi.org/ 10.5664/jcsm.11132 - DOI - PMC - PubMed
-
- Hermans LWA, Huijben IAM, van Gorp H, et al. Representations of temporal sleep dynamics: Review and synthesis of the literature. Sleep Med Rev. 2022;63:101611. doi: https://doi.org/ 10.1016/j.smrv.2022.101611 - DOI - PubMed
-
- Fiorillo L, Puiatti A, Papandrea M, et al. Automated sleep scoring: a review of the latest approaches. Sleep Med Rev. 2019;48:101204. doi: https://doi.org/ 10.1016/j.smrv.2019.07.007 - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
